Showing error 846

User: Jiri Slaby
Error type: Resource Leak
Error type description: The code omits to put the resource to the system for reuse
File location: drivers/net/sis900.c
Line in file: 283
Project: Linux Kernel
Project version: 2.6.28
Tools: Stanse (1.2)
Entered: 2011-11-07 22:40:13 UTC


Source:

   1/* sis900.c: A SiS 900/7016 PCI Fast Ethernet driver for Linux.
   2   Copyright 1999 Silicon Integrated System Corporation
   3   Revision:        1.08.10 Apr. 2 2006
   4
   5   Modified from the driver which is originally written by Donald Becker.
   6
   7   This software may be used and distributed according to the terms
   8   of the GNU General Public License (GPL), incorporated herein by reference.
   9   Drivers based on this skeleton fall under the GPL and must retain
  10   the authorship (implicit copyright) notice.
  11
  12   References:
  13   SiS 7016 Fast Ethernet PCI Bus 10/100 Mbps LAN Controller with OnNow Support,
  14   preliminary Rev. 1.0 Jan. 14, 1998
  15   SiS 900 Fast Ethernet PCI Bus 10/100 Mbps LAN Single Chip with OnNow Support,
  16   preliminary Rev. 1.0 Nov. 10, 1998
  17   SiS 7014 Single Chip 100BASE-TX/10BASE-T Physical Layer Solution,
  18   preliminary Rev. 1.0 Jan. 18, 1998
  19
  20   Rev 1.08.10 Apr.  2 2006 Daniele Venzano add vlan (jumbo packets) support
  21   Rev 1.08.09 Sep. 19 2005 Daniele Venzano add Wake on LAN support
  22   Rev 1.08.08 Jan. 22 2005 Daniele Venzano use netif_msg for debugging messages
  23   Rev 1.08.07 Nov.  2 2003 Daniele Venzano <venza@brownhat.org> add suspend/resume support
  24   Rev 1.08.06 Sep. 24 2002 Mufasa Yang bug fix for Tx timeout & add SiS963 support
  25   Rev 1.08.05 Jun.  6 2002 Mufasa Yang bug fix for read_eeprom & Tx descriptor over-boundary
  26   Rev 1.08.04 Apr. 25 2002 Mufasa Yang <mufasa@sis.com.tw> added SiS962 support
  27   Rev 1.08.03 Feb.  1 2002 Matt Domsch <Matt_Domsch@dell.com> update to use library crc32 function
  28   Rev 1.08.02 Nov. 30 2001 Hui-Fen Hsu workaround for EDB & bug fix for dhcp problem
  29   Rev 1.08.01 Aug. 25 2001 Hui-Fen Hsu update for 630ET & workaround for ICS1893 PHY
  30   Rev 1.08.00 Jun. 11 2001 Hui-Fen Hsu workaround for RTL8201 PHY and some bug fix
  31   Rev 1.07.11 Apr.  2 2001 Hui-Fen Hsu updates PCI drivers to use the new pci_set_dma_mask for kernel 2.4.3
  32   Rev 1.07.10 Mar.  1 2001 Hui-Fen Hsu <hfhsu@sis.com.tw> some bug fix & 635M/B support
  33   Rev 1.07.09 Feb.  9 2001 Dave Jones <davej@suse.de> PCI enable cleanup
  34   Rev 1.07.08 Jan.  8 2001 Lei-Chun Chang added RTL8201 PHY support
  35   Rev 1.07.07 Nov. 29 2000 Lei-Chun Chang added kernel-doc extractable documentation and 630 workaround fix
  36   Rev 1.07.06 Nov.  7 2000 Jeff Garzik <jgarzik@pobox.com> some bug fix and cleaning
  37   Rev 1.07.05 Nov.  6 2000 metapirat<metapirat@gmx.de> contribute media type select by ifconfig
  38   Rev 1.07.04 Sep.  6 2000 Lei-Chun Chang added ICS1893 PHY support
  39   Rev 1.07.03 Aug. 24 2000 Lei-Chun Chang (lcchang@sis.com.tw) modified 630E eqaulizer workaround rule
  40   Rev 1.07.01 Aug. 08 2000 Ollie Lho minor update for SiS 630E and SiS 630E A1
  41   Rev 1.07    Mar. 07 2000 Ollie Lho bug fix in Rx buffer ring
  42   Rev 1.06.04 Feb. 11 2000 Jeff Garzik <jgarzik@pobox.com> softnet and init for kernel 2.4
  43   Rev 1.06.03 Dec. 23 1999 Ollie Lho Third release
  44   Rev 1.06.02 Nov. 23 1999 Ollie Lho bug in mac probing fixed
  45   Rev 1.06.01 Nov. 16 1999 Ollie Lho CRC calculation provide by Joseph Zbiciak (im14u2c@primenet.com)
  46   Rev 1.06 Nov. 4 1999 Ollie Lho (ollie@sis.com.tw) Second release
  47   Rev 1.05.05 Oct. 29 1999 Ollie Lho (ollie@sis.com.tw) Single buffer Tx/Rx
  48   Chin-Shan Li (lcs@sis.com.tw) Added AMD Am79c901 HomePNA PHY support
  49   Rev 1.05 Aug. 7 1999 Jim Huang (cmhuang@sis.com.tw) Initial release
  50*/
  51
  52#include <linux/module.h>
  53#include <linux/moduleparam.h>
  54#include <linux/kernel.h>
  55#include <linux/string.h>
  56#include <linux/timer.h>
  57#include <linux/errno.h>
  58#include <linux/ioport.h>
  59#include <linux/slab.h>
  60#include <linux/interrupt.h>
  61#include <linux/pci.h>
  62#include <linux/netdevice.h>
  63#include <linux/init.h>
  64#include <linux/mii.h>
  65#include <linux/etherdevice.h>
  66#include <linux/skbuff.h>
  67#include <linux/delay.h>
  68#include <linux/ethtool.h>
  69#include <linux/crc32.h>
  70#include <linux/bitops.h>
  71#include <linux/dma-mapping.h>
  72
  73#include <asm/processor.h>      /* Processor type for cache alignment. */
  74#include <asm/io.h>
  75#include <asm/irq.h>
  76#include <asm/uaccess.h>        /* User space memory access functions */
  77
  78#include "sis900.h"
  79
  80#define SIS900_MODULE_NAME "sis900"
  81#define SIS900_DRV_VERSION "v1.08.10 Apr. 2 2006"
  82
  83static char version[] __devinitdata =
  84KERN_INFO "sis900.c: " SIS900_DRV_VERSION "\n";
  85
  86static int max_interrupt_work = 40;
  87static int multicast_filter_limit = 128;
  88
  89static int sis900_debug = -1; /* Use SIS900_DEF_MSG as value */
  90
  91#define SIS900_DEF_MSG \
  92        (NETIF_MSG_DRV                | \
  93         NETIF_MSG_LINK                | \
  94         NETIF_MSG_RX_ERR        | \
  95         NETIF_MSG_TX_ERR)
  96
  97/* Time in jiffies before concluding the transmitter is hung. */
  98#define TX_TIMEOUT  (4*HZ)
  99
 100enum {
 101        SIS_900 = 0,
 102        SIS_7016
 103};
 104static const char * card_names[] = {
 105        "SiS 900 PCI Fast Ethernet",
 106        "SiS 7016 PCI Fast Ethernet"
 107};
 108static struct pci_device_id sis900_pci_tbl [] = {
 109        {PCI_VENDOR_ID_SI, PCI_DEVICE_ID_SI_900,
 110         PCI_ANY_ID, PCI_ANY_ID, 0, 0, SIS_900},
 111        {PCI_VENDOR_ID_SI, PCI_DEVICE_ID_SI_7016,
 112         PCI_ANY_ID, PCI_ANY_ID, 0, 0, SIS_7016},
 113        {0,}
 114};
 115MODULE_DEVICE_TABLE (pci, sis900_pci_tbl);
 116
 117static void sis900_read_mode(struct net_device *net_dev, int *speed, int *duplex);
 118
 119static const struct mii_chip_info {
 120        const char * name;
 121        u16 phy_id0;
 122        u16 phy_id1;
 123        u8  phy_types;
 124#define        HOME         0x0001
 125#define LAN        0x0002
 126#define MIX        0x0003
 127#define UNKNOWN        0x0
 128} mii_chip_table[] = {
 129        { "SiS 900 Internal MII PHY",                 0x001d, 0x8000, LAN },
 130        { "SiS 7014 Physical Layer Solution",         0x0016, 0xf830, LAN },
 131        { "SiS 900 on Foxconn 661 7MI",         0x0143, 0xBC70, LAN },
 132        { "Altimata AC101LF PHY",               0x0022, 0x5520, LAN },
 133        { "ADM 7001 LAN PHY",                        0x002e, 0xcc60, LAN },
 134        { "AMD 79C901 10BASE-T PHY",                  0x0000, 0x6B70, LAN },
 135        { "AMD 79C901 HomePNA PHY",                0x0000, 0x6B90, HOME},
 136        { "ICS LAN PHY",                        0x0015, 0xF440, LAN },
 137        { "ICS LAN PHY",                        0x0143, 0xBC70, LAN },
 138        { "NS 83851 PHY",                        0x2000, 0x5C20, MIX },
 139        { "NS 83847 PHY",                       0x2000, 0x5C30, MIX },
 140        { "Realtek RTL8201 PHY",                0x0000, 0x8200, LAN },
 141        { "VIA 6103 PHY",                        0x0101, 0x8f20, LAN },
 142        {NULL,},
 143};
 144
 145struct mii_phy {
 146        struct mii_phy * next;
 147        int phy_addr;
 148        u16 phy_id0;
 149        u16 phy_id1;
 150        u16 status;
 151        u8  phy_types;
 152};
 153
 154typedef struct _BufferDesc {
 155        u32 link;
 156        u32 cmdsts;
 157        u32 bufptr;
 158} BufferDesc;
 159
 160struct sis900_private {
 161        struct pci_dev * pci_dev;
 162
 163        spinlock_t lock;
 164
 165        struct mii_phy * mii;
 166        struct mii_phy * first_mii; /* record the first mii structure */
 167        unsigned int cur_phy;
 168        struct mii_if_info mii_info;
 169
 170        struct timer_list timer; /* Link status detection timer. */
 171        u8 autong_complete; /* 1: auto-negotiate complete  */
 172
 173        u32 msg_enable;
 174
 175        unsigned int cur_rx, dirty_rx; /* producer/comsumer pointers for Tx/Rx ring */
 176        unsigned int cur_tx, dirty_tx;
 177
 178        /* The saved address of a sent/receive-in-place packet buffer */
 179        struct sk_buff *tx_skbuff[NUM_TX_DESC];
 180        struct sk_buff *rx_skbuff[NUM_RX_DESC];
 181        BufferDesc *tx_ring;
 182        BufferDesc *rx_ring;
 183
 184        dma_addr_t tx_ring_dma;
 185        dma_addr_t rx_ring_dma;
 186
 187        unsigned int tx_full; /* The Tx queue is full. */
 188        u8 host_bridge_rev;
 189        u8 chipset_rev;
 190};
 191
 192MODULE_AUTHOR("Jim Huang <cmhuang@sis.com.tw>, Ollie Lho <ollie@sis.com.tw>");
 193MODULE_DESCRIPTION("SiS 900 PCI Fast Ethernet driver");
 194MODULE_LICENSE("GPL");
 195
 196module_param(multicast_filter_limit, int, 0444);
 197module_param(max_interrupt_work, int, 0444);
 198module_param(sis900_debug, int, 0444);
 199MODULE_PARM_DESC(multicast_filter_limit, "SiS 900/7016 maximum number of filtered multicast addresses");
 200MODULE_PARM_DESC(max_interrupt_work, "SiS 900/7016 maximum events handled per interrupt");
 201MODULE_PARM_DESC(sis900_debug, "SiS 900/7016 bitmapped debugging message level");
 202
 203#ifdef CONFIG_NET_POLL_CONTROLLER
 204static void sis900_poll(struct net_device *dev);
 205#endif
 206static int sis900_open(struct net_device *net_dev);
 207static int sis900_mii_probe (struct net_device * net_dev);
 208static void sis900_init_rxfilter (struct net_device * net_dev);
 209static u16 read_eeprom(long ioaddr, int location);
 210static int mdio_read(struct net_device *net_dev, int phy_id, int location);
 211static void mdio_write(struct net_device *net_dev, int phy_id, int location, int val);
 212static void sis900_timer(unsigned long data);
 213static void sis900_check_mode (struct net_device *net_dev, struct mii_phy *mii_phy);
 214static void sis900_tx_timeout(struct net_device *net_dev);
 215static void sis900_init_tx_ring(struct net_device *net_dev);
 216static void sis900_init_rx_ring(struct net_device *net_dev);
 217static int sis900_start_xmit(struct sk_buff *skb, struct net_device *net_dev);
 218static int sis900_rx(struct net_device *net_dev);
 219static void sis900_finish_xmit (struct net_device *net_dev);
 220static irqreturn_t sis900_interrupt(int irq, void *dev_instance);
 221static int sis900_close(struct net_device *net_dev);
 222static int mii_ioctl(struct net_device *net_dev, struct ifreq *rq, int cmd);
 223static u16 sis900_mcast_bitnr(u8 *addr, u8 revision);
 224static void set_rx_mode(struct net_device *net_dev);
 225static void sis900_reset(struct net_device *net_dev);
 226static void sis630_set_eq(struct net_device *net_dev, u8 revision);
 227static int sis900_set_config(struct net_device *dev, struct ifmap *map);
 228static u16 sis900_default_phy(struct net_device * net_dev);
 229static void sis900_set_capability( struct net_device *net_dev ,struct mii_phy *phy);
 230static u16 sis900_reset_phy(struct net_device *net_dev, int phy_addr);
 231static void sis900_auto_negotiate(struct net_device *net_dev, int phy_addr);
 232static void sis900_set_mode (long ioaddr, int speed, int duplex);
 233static const struct ethtool_ops sis900_ethtool_ops;
 234
 235/**
 236 *        sis900_get_mac_addr - Get MAC address for stand alone SiS900 model
 237 *        @pci_dev: the sis900 pci device
 238 *        @net_dev: the net device to get address for
 239 *
 240 *        Older SiS900 and friends, use EEPROM to store MAC address.
 241 *        MAC address is read from read_eeprom() into @net_dev->dev_addr.
 242 */
 243
 244static int __devinit sis900_get_mac_addr(struct pci_dev * pci_dev, struct net_device *net_dev)
 245{
 246        long ioaddr = pci_resource_start(pci_dev, 0);
 247        u16 signature;
 248        int i;
 249
 250        /* check to see if we have sane EEPROM */
 251        signature = (u16) read_eeprom(ioaddr, EEPROMSignature);
 252        if (signature == 0xffff || signature == 0x0000) {
 253                printk (KERN_WARNING "%s: Error EERPOM read %x\n",
 254                        pci_name(pci_dev), signature);
 255                return 0;
 256        }
 257
 258        /* get MAC address from EEPROM */
 259        for (i = 0; i < 3; i++)
 260                ((u16 *)(net_dev->dev_addr))[i] = read_eeprom(ioaddr, i+EEPROMMACAddr);
 261
 262        return 1;
 263}
 264
 265/**
 266 *        sis630e_get_mac_addr - Get MAC address for SiS630E model
 267 *        @pci_dev: the sis900 pci device
 268 *        @net_dev: the net device to get address for
 269 *
 270 *        SiS630E model, use APC CMOS RAM to store MAC address.
 271 *        APC CMOS RAM is accessed through ISA bridge.
 272 *        MAC address is read into @net_dev->dev_addr.
 273 */
 274
 275static int __devinit sis630e_get_mac_addr(struct pci_dev * pci_dev,
 276                                        struct net_device *net_dev)
 277{
 278        struct pci_dev *isa_bridge = NULL;
 279        u8 reg;
 280        int i;
 281
 282        isa_bridge = pci_get_device(PCI_VENDOR_ID_SI, 0x0008, isa_bridge);
 283        if (!isa_bridge)
 284                isa_bridge = pci_get_device(PCI_VENDOR_ID_SI, 0x0018, isa_bridge);
 285        if (!isa_bridge) {
 286                printk(KERN_WARNING "%s: Can not find ISA bridge\n",
 287                       pci_name(pci_dev));
 288                return 0;
 289        }
 290        pci_read_config_byte(isa_bridge, 0x48, &reg);
 291        pci_write_config_byte(isa_bridge, 0x48, reg | 0x40);
 292
 293        for (i = 0; i < 6; i++) {
 294                outb(0x09 + i, 0x70);
 295                ((u8 *)(net_dev->dev_addr))[i] = inb(0x71);
 296        }
 297        pci_write_config_byte(isa_bridge, 0x48, reg & ~0x40);
 298        pci_dev_put(isa_bridge);
 299
 300        return 1;
 301}
 302
 303
 304/**
 305 *        sis635_get_mac_addr - Get MAC address for SIS635 model
 306 *        @pci_dev: the sis900 pci device
 307 *        @net_dev: the net device to get address for
 308 *
 309 *        SiS635 model, set MAC Reload Bit to load Mac address from APC
 310 *        to rfdr. rfdr is accessed through rfcr. MAC address is read into
 311 *        @net_dev->dev_addr.
 312 */
 313
 314static int __devinit sis635_get_mac_addr(struct pci_dev * pci_dev,
 315                                        struct net_device *net_dev)
 316{
 317        long ioaddr = net_dev->base_addr;
 318        u32 rfcrSave;
 319        u32 i;
 320
 321        rfcrSave = inl(rfcr + ioaddr);
 322
 323        outl(rfcrSave | RELOAD, ioaddr + cr);
 324        outl(0, ioaddr + cr);
 325
 326        /* disable packet filtering before setting filter */
 327        outl(rfcrSave & ~RFEN, rfcr + ioaddr);
 328
 329        /* load MAC addr to filter data register */
 330        for (i = 0 ; i < 3 ; i++) {
 331                outl((i << RFADDR_shift), ioaddr + rfcr);
 332                *( ((u16 *)net_dev->dev_addr) + i) = inw(ioaddr + rfdr);
 333        }
 334
 335        /* enable packet filtering */
 336        outl(rfcrSave | RFEN, rfcr + ioaddr);
 337
 338        return 1;
 339}
 340
 341/**
 342 *        sis96x_get_mac_addr - Get MAC address for SiS962 or SiS963 model
 343 *        @pci_dev: the sis900 pci device
 344 *        @net_dev: the net device to get address for
 345 *
 346 *        SiS962 or SiS963 model, use EEPROM to store MAC address. And EEPROM
 347 *        is shared by
 348 *        LAN and 1394. When access EEPROM, send EEREQ signal to hardware first
 349 *        and wait for EEGNT. If EEGNT is ON, EEPROM is permitted to be access
 350 *        by LAN, otherwise is not. After MAC address is read from EEPROM, send
 351 *        EEDONE signal to refuse EEPROM access by LAN.
 352 *        The EEPROM map of SiS962 or SiS963 is different to SiS900.
 353 *        The signature field in SiS962 or SiS963 spec is meaningless.
 354 *        MAC address is read into @net_dev->dev_addr.
 355 */
 356
 357static int __devinit sis96x_get_mac_addr(struct pci_dev * pci_dev,
 358                                        struct net_device *net_dev)
 359{
 360        long ioaddr = net_dev->base_addr;
 361        long ee_addr = ioaddr + mear;
 362        u32 waittime = 0;
 363        int i;
 364
 365        outl(EEREQ, ee_addr);
 366        while(waittime < 2000) {
 367                if(inl(ee_addr) & EEGNT) {
 368
 369                        /* get MAC address from EEPROM */
 370                        for (i = 0; i < 3; i++)
 371                                ((u16 *)(net_dev->dev_addr))[i] = read_eeprom(ioaddr, i+EEPROMMACAddr);
 372
 373                        outl(EEDONE, ee_addr);
 374                        return 1;
 375                } else {
 376                        udelay(1);
 377                        waittime ++;
 378                }
 379        }
 380        outl(EEDONE, ee_addr);
 381        return 0;
 382}
 383
 384/**
 385 *        sis900_probe - Probe for sis900 device
 386 *        @pci_dev: the sis900 pci device
 387 *        @pci_id: the pci device ID
 388 *
 389 *        Check and probe sis900 net device for @pci_dev.
 390 *        Get mac address according to the chip revision,
 391 *        and assign SiS900-specific entries in the device structure.
 392 *        ie: sis900_open(), sis900_start_xmit(), sis900_close(), etc.
 393 */
 394
 395static int __devinit sis900_probe(struct pci_dev *pci_dev,
 396                                const struct pci_device_id *pci_id)
 397{
 398        struct sis900_private *sis_priv;
 399        struct net_device *net_dev;
 400        struct pci_dev *dev;
 401        dma_addr_t ring_dma;
 402        void *ring_space;
 403        long ioaddr;
 404        int i, ret;
 405        const char *card_name = card_names[pci_id->driver_data];
 406        const char *dev_name = pci_name(pci_dev);
 407        DECLARE_MAC_BUF(mac);
 408
 409/* when built into the kernel, we only print version if device is found */
 410#ifndef MODULE
 411        static int printed_version;
 412        if (!printed_version++)
 413                printk(version);
 414#endif
 415
 416        /* setup various bits in PCI command register */
 417        ret = pci_enable_device(pci_dev);
 418        if(ret) return ret;
 419
 420        i = pci_set_dma_mask(pci_dev, DMA_32BIT_MASK);
 421        if(i){
 422                printk(KERN_ERR "sis900.c: architecture does not support "
 423                        "32bit PCI busmaster DMA\n");
 424                return i;
 425        }
 426
 427        pci_set_master(pci_dev);
 428
 429        net_dev = alloc_etherdev(sizeof(struct sis900_private));
 430        if (!net_dev)
 431                return -ENOMEM;
 432        SET_NETDEV_DEV(net_dev, &pci_dev->dev);
 433
 434        /* We do a request_region() to register /proc/ioports info. */
 435        ioaddr = pci_resource_start(pci_dev, 0);
 436        ret = pci_request_regions(pci_dev, "sis900");
 437        if (ret)
 438                goto err_out;
 439
 440        sis_priv = net_dev->priv;
 441        net_dev->base_addr = ioaddr;
 442        net_dev->irq = pci_dev->irq;
 443        sis_priv->pci_dev = pci_dev;
 444        spin_lock_init(&sis_priv->lock);
 445
 446        pci_set_drvdata(pci_dev, net_dev);
 447
 448        ring_space = pci_alloc_consistent(pci_dev, TX_TOTAL_SIZE, &ring_dma);
 449        if (!ring_space) {
 450                ret = -ENOMEM;
 451                goto err_out_cleardev;
 452        }
 453        sis_priv->tx_ring = (BufferDesc *)ring_space;
 454        sis_priv->tx_ring_dma = ring_dma;
 455
 456        ring_space = pci_alloc_consistent(pci_dev, RX_TOTAL_SIZE, &ring_dma);
 457        if (!ring_space) {
 458                ret = -ENOMEM;
 459                goto err_unmap_tx;
 460        }
 461        sis_priv->rx_ring = (BufferDesc *)ring_space;
 462        sis_priv->rx_ring_dma = ring_dma;
 463
 464        /* The SiS900-specific entries in the device structure. */
 465        net_dev->open = &sis900_open;
 466        net_dev->hard_start_xmit = &sis900_start_xmit;
 467        net_dev->stop = &sis900_close;
 468        net_dev->set_config = &sis900_set_config;
 469        net_dev->set_multicast_list = &set_rx_mode;
 470        net_dev->do_ioctl = &mii_ioctl;
 471        net_dev->tx_timeout = sis900_tx_timeout;
 472        net_dev->watchdog_timeo = TX_TIMEOUT;
 473        net_dev->ethtool_ops = &sis900_ethtool_ops;
 474
 475#ifdef CONFIG_NET_POLL_CONTROLLER
 476        net_dev->poll_controller = &sis900_poll;
 477#endif
 478
 479        if (sis900_debug > 0)
 480                sis_priv->msg_enable = sis900_debug;
 481        else
 482                sis_priv->msg_enable = SIS900_DEF_MSG;
 483
 484        sis_priv->mii_info.dev = net_dev;
 485        sis_priv->mii_info.mdio_read = mdio_read;
 486        sis_priv->mii_info.mdio_write = mdio_write;
 487        sis_priv->mii_info.phy_id_mask = 0x1f;
 488        sis_priv->mii_info.reg_num_mask = 0x1f;
 489
 490        /* Get Mac address according to the chip revision */
 491        pci_read_config_byte(pci_dev, PCI_CLASS_REVISION, &(sis_priv->chipset_rev));
 492        if(netif_msg_probe(sis_priv))
 493                printk(KERN_DEBUG "%s: detected revision %2.2x, "
 494                                "trying to get MAC address...\n",
 495                                dev_name, sis_priv->chipset_rev);
 496
 497        ret = 0;
 498        if (sis_priv->chipset_rev == SIS630E_900_REV)
 499                ret = sis630e_get_mac_addr(pci_dev, net_dev);
 500        else if ((sis_priv->chipset_rev > 0x81) && (sis_priv->chipset_rev <= 0x90) )
 501                ret = sis635_get_mac_addr(pci_dev, net_dev);
 502        else if (sis_priv->chipset_rev == SIS96x_900_REV)
 503                ret = sis96x_get_mac_addr(pci_dev, net_dev);
 504        else
 505                ret = sis900_get_mac_addr(pci_dev, net_dev);
 506
 507        if (ret == 0) {
 508                printk(KERN_WARNING "%s: Cannot read MAC address.\n", dev_name);
 509                ret = -ENODEV;
 510                goto err_unmap_rx;
 511        }
 512
 513        /* 630ET : set the mii access mode as software-mode */
 514        if (sis_priv->chipset_rev == SIS630ET_900_REV)
 515                outl(ACCESSMODE | inl(ioaddr + cr), ioaddr + cr);
 516
 517        /* probe for mii transceiver */
 518        if (sis900_mii_probe(net_dev) == 0) {
 519                printk(KERN_WARNING "%s: Error probing MII device.\n",
 520                       dev_name);
 521                ret = -ENODEV;
 522                goto err_unmap_rx;
 523        }
 524
 525        /* save our host bridge revision */
 526        dev = pci_get_device(PCI_VENDOR_ID_SI, PCI_DEVICE_ID_SI_630, NULL);
 527        if (dev) {
 528                pci_read_config_byte(dev, PCI_CLASS_REVISION, &sis_priv->host_bridge_rev);
 529                pci_dev_put(dev);
 530        }
 531
 532        ret = register_netdev(net_dev);
 533        if (ret)
 534                goto err_unmap_rx;
 535
 536        /* print some information about our NIC */
 537        printk(KERN_INFO "%s: %s at %#lx, IRQ %d, %s\n",
 538               net_dev->name, card_name, ioaddr, net_dev->irq,
 539               print_mac(mac, net_dev->dev_addr));
 540
 541        /* Detect Wake on Lan support */
 542        ret = (inl(net_dev->base_addr + CFGPMC) & PMESP) >> 27;
 543        if (netif_msg_probe(sis_priv) && (ret & PME_D3C) == 0)
 544                printk(KERN_INFO "%s: Wake on LAN only available from suspend to RAM.", net_dev->name);
 545
 546        return 0;
 547
 548 err_unmap_rx:
 549        pci_free_consistent(pci_dev, RX_TOTAL_SIZE, sis_priv->rx_ring,
 550                sis_priv->rx_ring_dma);
 551 err_unmap_tx:
 552        pci_free_consistent(pci_dev, TX_TOTAL_SIZE, sis_priv->tx_ring,
 553                sis_priv->tx_ring_dma);
 554 err_out_cleardev:
 555         pci_set_drvdata(pci_dev, NULL);
 556        pci_release_regions(pci_dev);
 557 err_out:
 558        free_netdev(net_dev);
 559        return ret;
 560}
 561
 562/**
 563 *        sis900_mii_probe - Probe MII PHY for sis900
 564 *        @net_dev: the net device to probe for
 565 *
 566 *        Search for total of 32 possible mii phy addresses.
 567 *        Identify and set current phy if found one,
 568 *        return error if it failed to found.
 569 */
 570
 571static int __devinit sis900_mii_probe(struct net_device * net_dev)
 572{
 573        struct sis900_private * sis_priv = net_dev->priv;
 574        const char *dev_name = pci_name(sis_priv->pci_dev);
 575        u16 poll_bit = MII_STAT_LINK, status = 0;
 576        unsigned long timeout = jiffies + 5 * HZ;
 577        int phy_addr;
 578
 579        sis_priv->mii = NULL;
 580
 581        /* search for total of 32 possible mii phy addresses */
 582        for (phy_addr = 0; phy_addr < 32; phy_addr++) {
 583                struct mii_phy * mii_phy = NULL;
 584                u16 mii_status;
 585                int i;
 586
 587                mii_phy = NULL;
 588                for(i = 0; i < 2; i++)
 589                        mii_status = mdio_read(net_dev, phy_addr, MII_STATUS);
 590
 591                if (mii_status == 0xffff || mii_status == 0x0000) {
 592                        if (netif_msg_probe(sis_priv))
 593                                printk(KERN_DEBUG "%s: MII at address %d"
 594                                                " not accessible\n",
 595                                                dev_name, phy_addr);
 596                        continue;
 597                }
 598
 599                if ((mii_phy = kmalloc(sizeof(struct mii_phy), GFP_KERNEL)) == NULL) {
 600                        printk(KERN_WARNING "Cannot allocate mem for struct mii_phy\n");
 601                        mii_phy = sis_priv->first_mii;
 602                        while (mii_phy) {
 603                                struct mii_phy *phy;
 604                                phy = mii_phy;
 605                                mii_phy = mii_phy->next;
 606                                kfree(phy);
 607                        }
 608                        return 0;
 609                }
 610
 611                mii_phy->phy_id0 = mdio_read(net_dev, phy_addr, MII_PHY_ID0);
 612                mii_phy->phy_id1 = mdio_read(net_dev, phy_addr, MII_PHY_ID1);
 613                mii_phy->phy_addr = phy_addr;
 614                mii_phy->status = mii_status;
 615                mii_phy->next = sis_priv->mii;
 616                sis_priv->mii = mii_phy;
 617                sis_priv->first_mii = mii_phy;
 618
 619                for (i = 0; mii_chip_table[i].phy_id1; i++)
 620                        if ((mii_phy->phy_id0 == mii_chip_table[i].phy_id0 ) &&
 621                            ((mii_phy->phy_id1 & 0xFFF0) == mii_chip_table[i].phy_id1)){
 622                                mii_phy->phy_types = mii_chip_table[i].phy_types;
 623                                if (mii_chip_table[i].phy_types == MIX)
 624                                        mii_phy->phy_types =
 625                                            (mii_status & (MII_STAT_CAN_TX_FDX | MII_STAT_CAN_TX)) ? LAN : HOME;
 626                                printk(KERN_INFO "%s: %s transceiver found "
 627                                                        "at address %d.\n",
 628                                                        dev_name,
 629                                                        mii_chip_table[i].name,
 630                                                        phy_addr);
 631                                break;
 632                        }
 633
 634                if( !mii_chip_table[i].phy_id1 ) {
 635                        printk(KERN_INFO "%s: Unknown PHY transceiver found at address %d.\n",
 636                               dev_name, phy_addr);
 637                        mii_phy->phy_types = UNKNOWN;
 638                }
 639        }
 640
 641        if (sis_priv->mii == NULL) {
 642                printk(KERN_INFO "%s: No MII transceivers found!\n", dev_name);
 643                return 0;
 644        }
 645
 646        /* select default PHY for mac */
 647        sis_priv->mii = NULL;
 648        sis900_default_phy( net_dev );
 649
 650        /* Reset phy if default phy is internal sis900 */
 651        if ((sis_priv->mii->phy_id0 == 0x001D) &&
 652            ((sis_priv->mii->phy_id1&0xFFF0) == 0x8000))
 653                status = sis900_reset_phy(net_dev, sis_priv->cur_phy);
 654
 655        /* workaround for ICS1893 PHY */
 656        if ((sis_priv->mii->phy_id0 == 0x0015) &&
 657            ((sis_priv->mii->phy_id1&0xFFF0) == 0xF440))
 658                    mdio_write(net_dev, sis_priv->cur_phy, 0x0018, 0xD200);
 659
 660        if(status & MII_STAT_LINK){
 661                while (poll_bit) {
 662                        yield();
 663
 664                        poll_bit ^= (mdio_read(net_dev, sis_priv->cur_phy, MII_STATUS) & poll_bit);
 665                        if (time_after_eq(jiffies, timeout)) {
 666                                printk(KERN_WARNING "%s: reset phy and link down now\n",
 667                                       dev_name);
 668                                return -ETIME;
 669                        }
 670                }
 671        }
 672
 673        if (sis_priv->chipset_rev == SIS630E_900_REV) {
 674                /* SiS 630E has some bugs on default value of PHY registers */
 675                mdio_write(net_dev, sis_priv->cur_phy, MII_ANADV, 0x05e1);
 676                mdio_write(net_dev, sis_priv->cur_phy, MII_CONFIG1, 0x22);
 677                mdio_write(net_dev, sis_priv->cur_phy, MII_CONFIG2, 0xff00);
 678                mdio_write(net_dev, sis_priv->cur_phy, MII_MASK, 0xffc0);
 679                //mdio_write(net_dev, sis_priv->cur_phy, MII_CONTROL, 0x1000);
 680        }
 681
 682        if (sis_priv->mii->status & MII_STAT_LINK)
 683                netif_carrier_on(net_dev);
 684        else
 685                netif_carrier_off(net_dev);
 686
 687        return 1;
 688}
 689
 690/**
 691 *        sis900_default_phy - Select default PHY for sis900 mac.
 692 *        @net_dev: the net device to probe for
 693 *
 694 *        Select first detected PHY with link as default.
 695 *        If no one is link on, select PHY whose types is HOME as default.
 696 *        If HOME doesn't exist, select LAN.
 697 */
 698
 699static u16 sis900_default_phy(struct net_device * net_dev)
 700{
 701        struct sis900_private * sis_priv = net_dev->priv;
 702         struct mii_phy *phy = NULL, *phy_home = NULL,
 703                *default_phy = NULL, *phy_lan = NULL;
 704        u16 status;
 705
 706        for (phy=sis_priv->first_mii; phy; phy=phy->next) {
 707                status = mdio_read(net_dev, phy->phy_addr, MII_STATUS);
 708                status = mdio_read(net_dev, phy->phy_addr, MII_STATUS);
 709
 710                /* Link ON & Not select default PHY & not ghost PHY */
 711                 if ((status & MII_STAT_LINK) && !default_phy &&
 712                                        (phy->phy_types != UNKNOWN))
 713                         default_phy = phy;
 714                 else {
 715                        status = mdio_read(net_dev, phy->phy_addr, MII_CONTROL);
 716                        mdio_write(net_dev, phy->phy_addr, MII_CONTROL,
 717                                status | MII_CNTL_AUTO | MII_CNTL_ISOLATE);
 718                        if (phy->phy_types == HOME)
 719                                phy_home = phy;
 720                        else if(phy->phy_types == LAN)
 721                                phy_lan = phy;
 722                 }
 723        }
 724
 725        if (!default_phy && phy_home)
 726                default_phy = phy_home;
 727        else if (!default_phy && phy_lan)
 728                default_phy = phy_lan;
 729        else if (!default_phy)
 730                default_phy = sis_priv->first_mii;
 731
 732        if (sis_priv->mii != default_phy) {
 733                sis_priv->mii = default_phy;
 734                sis_priv->cur_phy = default_phy->phy_addr;
 735                printk(KERN_INFO "%s: Using transceiver found at address %d as default\n",
 736                       pci_name(sis_priv->pci_dev), sis_priv->cur_phy);
 737        }
 738
 739        sis_priv->mii_info.phy_id = sis_priv->cur_phy;
 740
 741        status = mdio_read(net_dev, sis_priv->cur_phy, MII_CONTROL);
 742        status &= (~MII_CNTL_ISOLATE);
 743
 744        mdio_write(net_dev, sis_priv->cur_phy, MII_CONTROL, status);
 745        status = mdio_read(net_dev, sis_priv->cur_phy, MII_STATUS);
 746        status = mdio_read(net_dev, sis_priv->cur_phy, MII_STATUS);
 747
 748        return status;
 749}
 750
 751
 752/**
 753 *         sis900_set_capability - set the media capability of network adapter.
 754 *        @net_dev : the net device to probe for
 755 *        @phy : default PHY
 756 *
 757 *        Set the media capability of network adapter according to
 758 *        mii status register. It's necessary before auto-negotiate.
 759 */
 760
 761static void sis900_set_capability(struct net_device *net_dev, struct mii_phy *phy)
 762{
 763        u16 cap;
 764        u16 status;
 765
 766        status = mdio_read(net_dev, phy->phy_addr, MII_STATUS);
 767        status = mdio_read(net_dev, phy->phy_addr, MII_STATUS);
 768
 769        cap = MII_NWAY_CSMA_CD |
 770                ((phy->status & MII_STAT_CAN_TX_FDX)? MII_NWAY_TX_FDX:0) |
 771                ((phy->status & MII_STAT_CAN_TX)    ? MII_NWAY_TX:0) |
 772                ((phy->status & MII_STAT_CAN_T_FDX) ? MII_NWAY_T_FDX:0)|
 773                ((phy->status & MII_STAT_CAN_T)     ? MII_NWAY_T:0);
 774
 775        mdio_write(net_dev, phy->phy_addr, MII_ANADV, cap);
 776}
 777
 778
 779/* Delay between EEPROM clock transitions. */
 780#define eeprom_delay()  inl(ee_addr)
 781
 782/**
 783 *        read_eeprom - Read Serial EEPROM
 784 *        @ioaddr: base i/o address
 785 *        @location: the EEPROM location to read
 786 *
 787 *        Read Serial EEPROM through EEPROM Access Register.
 788 *        Note that location is in word (16 bits) unit
 789 */
 790
 791static u16 __devinit read_eeprom(long ioaddr, int location)
 792{
 793        int i;
 794        u16 retval = 0;
 795        long ee_addr = ioaddr + mear;
 796        u32 read_cmd = location | EEread;
 797
 798        outl(0, ee_addr);
 799        eeprom_delay();
 800        outl(EECS, ee_addr);
 801        eeprom_delay();
 802
 803        /* Shift the read command (9) bits out. */
 804        for (i = 8; i >= 0; i--) {
 805                u32 dataval = (read_cmd & (1 << i)) ? EEDI | EECS : EECS;
 806                outl(dataval, ee_addr);
 807                eeprom_delay();
 808                outl(dataval | EECLK, ee_addr);
 809                eeprom_delay();
 810        }
 811        outl(EECS, ee_addr);
 812        eeprom_delay();
 813
 814        /* read the 16-bits data in */
 815        for (i = 16; i > 0; i--) {
 816                outl(EECS, ee_addr);
 817                eeprom_delay();
 818                outl(EECS | EECLK, ee_addr);
 819                eeprom_delay();
 820                retval = (retval << 1) | ((inl(ee_addr) & EEDO) ? 1 : 0);
 821                eeprom_delay();
 822        }
 823
 824        /* Terminate the EEPROM access. */
 825        outl(0, ee_addr);
 826        eeprom_delay();
 827
 828        return (retval);
 829}
 830
 831/* Read and write the MII management registers using software-generated
 832   serial MDIO protocol. Note that the command bits and data bits are
 833   send out separately */
 834#define mdio_delay()    inl(mdio_addr)
 835
 836static void mdio_idle(long mdio_addr)
 837{
 838        outl(MDIO | MDDIR, mdio_addr);
 839        mdio_delay();
 840        outl(MDIO | MDDIR | MDC, mdio_addr);
 841}
 842
 843/* Syncronize the MII management interface by shifting 32 one bits out. */
 844static void mdio_reset(long mdio_addr)
 845{
 846        int i;
 847
 848        for (i = 31; i >= 0; i--) {
 849                outl(MDDIR | MDIO, mdio_addr);
 850                mdio_delay();
 851                outl(MDDIR | MDIO | MDC, mdio_addr);
 852                mdio_delay();
 853        }
 854        return;
 855}
 856
 857/**
 858 *        mdio_read - read MII PHY register
 859 *        @net_dev: the net device to read
 860 *        @phy_id: the phy address to read
 861 *        @location: the phy regiester id to read
 862 *
 863 *        Read MII registers through MDIO and MDC
 864 *        using MDIO management frame structure and protocol(defined by ISO/IEC).
 865 *        Please see SiS7014 or ICS spec
 866 */
 867
 868static int mdio_read(struct net_device *net_dev, int phy_id, int location)
 869{
 870        long mdio_addr = net_dev->base_addr + mear;
 871        int mii_cmd = MIIread|(phy_id<<MIIpmdShift)|(location<<MIIregShift);
 872        u16 retval = 0;
 873        int i;
 874
 875        mdio_reset(mdio_addr);
 876        mdio_idle(mdio_addr);
 877
 878        for (i = 15; i >= 0; i--) {
 879                int dataval = (mii_cmd & (1 << i)) ? MDDIR | MDIO : MDDIR;
 880                outl(dataval, mdio_addr);
 881                mdio_delay();
 882                outl(dataval | MDC, mdio_addr);
 883                mdio_delay();
 884        }
 885
 886        /* Read the 16 data bits. */
 887        for (i = 16; i > 0; i--) {
 888                outl(0, mdio_addr);
 889                mdio_delay();
 890                retval = (retval << 1) | ((inl(mdio_addr) & MDIO) ? 1 : 0);
 891                outl(MDC, mdio_addr);
 892                mdio_delay();
 893        }
 894        outl(0x00, mdio_addr);
 895
 896        return retval;
 897}
 898
 899/**
 900 *        mdio_write - write MII PHY register
 901 *        @net_dev: the net device to write
 902 *        @phy_id: the phy address to write
 903 *        @location: the phy regiester id to write
 904 *        @value: the register value to write with
 905 *
 906 *        Write MII registers with @value through MDIO and MDC
 907 *        using MDIO management frame structure and protocol(defined by ISO/IEC)
 908 *        please see SiS7014 or ICS spec
 909 */
 910
 911static void mdio_write(struct net_device *net_dev, int phy_id, int location,
 912                        int value)
 913{
 914        long mdio_addr = net_dev->base_addr + mear;
 915        int mii_cmd = MIIwrite|(phy_id<<MIIpmdShift)|(location<<MIIregShift);
 916        int i;
 917
 918        mdio_reset(mdio_addr);
 919        mdio_idle(mdio_addr);
 920
 921        /* Shift the command bits out. */
 922        for (i = 15; i >= 0; i--) {
 923                int dataval = (mii_cmd & (1 << i)) ? MDDIR | MDIO : MDDIR;
 924                outb(dataval, mdio_addr);
 925                mdio_delay();
 926                outb(dataval | MDC, mdio_addr);
 927                mdio_delay();
 928        }
 929        mdio_delay();
 930
 931        /* Shift the value bits out. */
 932        for (i = 15; i >= 0; i--) {
 933                int dataval = (value & (1 << i)) ? MDDIR | MDIO : MDDIR;
 934                outl(dataval, mdio_addr);
 935                mdio_delay();
 936                outl(dataval | MDC, mdio_addr);
 937                mdio_delay();
 938        }
 939        mdio_delay();
 940
 941        /* Clear out extra bits. */
 942        for (i = 2; i > 0; i--) {
 943                outb(0, mdio_addr);
 944                mdio_delay();
 945                outb(MDC, mdio_addr);
 946                mdio_delay();
 947        }
 948        outl(0x00, mdio_addr);
 949
 950        return;
 951}
 952
 953
 954/**
 955 *        sis900_reset_phy - reset sis900 mii phy.
 956 *        @net_dev: the net device to write
 957 *        @phy_addr: default phy address
 958 *
 959 *        Some specific phy can't work properly without reset.
 960 *        This function will be called during initialization and
 961 *        link status change from ON to DOWN.
 962 */
 963
 964static u16 sis900_reset_phy(struct net_device *net_dev, int phy_addr)
 965{
 966        int i;
 967        u16 status;
 968
 969        for (i = 0; i < 2; i++)
 970                status = mdio_read(net_dev, phy_addr, MII_STATUS);
 971
 972        mdio_write( net_dev, phy_addr, MII_CONTROL, MII_CNTL_RESET );
 973
 974        return status;
 975}
 976
 977#ifdef CONFIG_NET_POLL_CONTROLLER
 978/*
 979 * Polling 'interrupt' - used by things like netconsole to send skbs
 980 * without having to re-enable interrupts. It's not called while
 981 * the interrupt routine is executing.
 982*/
 983static void sis900_poll(struct net_device *dev)
 984{
 985        disable_irq(dev->irq);
 986        sis900_interrupt(dev->irq, dev);
 987        enable_irq(dev->irq);
 988}
 989#endif
 990
 991/**
 992 *        sis900_open - open sis900 device
 993 *        @net_dev: the net device to open
 994 *
 995 *        Do some initialization and start net interface.
 996 *        enable interrupts and set sis900 timer.
 997 */
 998
 999static int
1000sis900_open(struct net_device *net_dev)
1001{
1002        struct sis900_private *sis_priv = net_dev->priv;
1003        long ioaddr = net_dev->base_addr;
1004        int ret;
1005
1006        /* Soft reset the chip. */
1007        sis900_reset(net_dev);
1008
1009        /* Equalizer workaround Rule */
1010        sis630_set_eq(net_dev, sis_priv->chipset_rev);
1011
1012        ret = request_irq(net_dev->irq, &sis900_interrupt, IRQF_SHARED,
1013                                                net_dev->name, net_dev);
1014        if (ret)
1015                return ret;
1016
1017        sis900_init_rxfilter(net_dev);
1018
1019        sis900_init_tx_ring(net_dev);
1020        sis900_init_rx_ring(net_dev);
1021
1022        set_rx_mode(net_dev);
1023
1024        netif_start_queue(net_dev);
1025
1026        /* Workaround for EDB */
1027        sis900_set_mode(ioaddr, HW_SPEED_10_MBPS, FDX_CAPABLE_HALF_SELECTED);
1028
1029        /* Enable all known interrupts by setting the interrupt mask. */
1030        outl((RxSOVR|RxORN|RxERR|RxOK|TxURN|TxERR|TxIDLE), ioaddr + imr);
1031        outl(RxENA | inl(ioaddr + cr), ioaddr + cr);
1032        outl(IE, ioaddr + ier);
1033
1034        sis900_check_mode(net_dev, sis_priv->mii);
1035
1036        /* Set the timer to switch to check for link beat and perhaps switch
1037           to an alternate media type. */
1038        init_timer(&sis_priv->timer);
1039        sis_priv->timer.expires = jiffies + HZ;
1040        sis_priv->timer.data = (unsigned long)net_dev;
1041        sis_priv->timer.function = &sis900_timer;
1042        add_timer(&sis_priv->timer);
1043
1044        return 0;
1045}
1046
1047/**
1048 *        sis900_init_rxfilter - Initialize the Rx filter
1049 *        @net_dev: the net device to initialize for
1050 *
1051 *        Set receive filter address to our MAC address
1052 *        and enable packet filtering.
1053 */
1054
1055static void
1056sis900_init_rxfilter (struct net_device * net_dev)
1057{
1058        struct sis900_private *sis_priv = net_dev->priv;
1059        long ioaddr = net_dev->base_addr;
1060        u32 rfcrSave;
1061        u32 i;
1062
1063        rfcrSave = inl(rfcr + ioaddr);
1064
1065        /* disable packet filtering before setting filter */
1066        outl(rfcrSave & ~RFEN, rfcr + ioaddr);
1067
1068        /* load MAC addr to filter data register */
1069        for (i = 0 ; i < 3 ; i++) {
1070                u32 w;
1071
1072                w = (u32) *((u16 *)(net_dev->dev_addr)+i);
1073                outl((i << RFADDR_shift), ioaddr + rfcr);
1074                outl(w, ioaddr + rfdr);
1075
1076                if (netif_msg_hw(sis_priv)) {
1077                        printk(KERN_DEBUG "%s: Receive Filter Addrss[%d]=%x\n",
1078                               net_dev->name, i, inl(ioaddr + rfdr));
1079                }
1080        }
1081
1082        /* enable packet filtering */
1083        outl(rfcrSave | RFEN, rfcr + ioaddr);
1084}
1085
1086/**
1087 *        sis900_init_tx_ring - Initialize the Tx descriptor ring
1088 *        @net_dev: the net device to initialize for
1089 *
1090 *        Initialize the Tx descriptor ring,
1091 */
1092
1093static void
1094sis900_init_tx_ring(struct net_device *net_dev)
1095{
1096        struct sis900_private *sis_priv = net_dev->priv;
1097        long ioaddr = net_dev->base_addr;
1098        int i;
1099
1100        sis_priv->tx_full = 0;
1101        sis_priv->dirty_tx = sis_priv->cur_tx = 0;
1102
1103        for (i = 0; i < NUM_TX_DESC; i++) {
1104                sis_priv->tx_skbuff[i] = NULL;
1105
1106                sis_priv->tx_ring[i].link = sis_priv->tx_ring_dma +
1107                        ((i+1)%NUM_TX_DESC)*sizeof(BufferDesc);
1108                sis_priv->tx_ring[i].cmdsts = 0;
1109                sis_priv->tx_ring[i].bufptr = 0;
1110        }
1111
1112        /* load Transmit Descriptor Register */
1113        outl(sis_priv->tx_ring_dma, ioaddr + txdp);
1114        if (netif_msg_hw(sis_priv))
1115                printk(KERN_DEBUG "%s: TX descriptor register loaded with: %8.8x\n",
1116                       net_dev->name, inl(ioaddr + txdp));
1117}
1118
1119/**
1120 *        sis900_init_rx_ring - Initialize the Rx descriptor ring
1121 *        @net_dev: the net device to initialize for
1122 *
1123 *        Initialize the Rx descriptor ring,
1124 *        and pre-allocate recevie buffers (socket buffer)
1125 */
1126
1127static void
1128sis900_init_rx_ring(struct net_device *net_dev)
1129{
1130        struct sis900_private *sis_priv = net_dev->priv;
1131        long ioaddr = net_dev->base_addr;
1132        int i;
1133
1134        sis_priv->cur_rx = 0;
1135        sis_priv->dirty_rx = 0;
1136
1137        /* init RX descriptor */
1138        for (i = 0; i < NUM_RX_DESC; i++) {
1139                sis_priv->rx_skbuff[i] = NULL;
1140
1141                sis_priv->rx_ring[i].link = sis_priv->rx_ring_dma +
1142                        ((i+1)%NUM_RX_DESC)*sizeof(BufferDesc);
1143                sis_priv->rx_ring[i].cmdsts = 0;
1144                sis_priv->rx_ring[i].bufptr = 0;
1145        }
1146
1147        /* allocate sock buffers */
1148        for (i = 0; i < NUM_RX_DESC; i++) {
1149                struct sk_buff *skb;
1150
1151                if ((skb = dev_alloc_skb(RX_BUF_SIZE)) == NULL) {
1152                        /* not enough memory for skbuff, this makes a "hole"
1153                           on the buffer ring, it is not clear how the
1154                           hardware will react to this kind of degenerated
1155                           buffer */
1156                        break;
1157                }
1158                sis_priv->rx_skbuff[i] = skb;
1159                sis_priv->rx_ring[i].cmdsts = RX_BUF_SIZE;
1160                sis_priv->rx_ring[i].bufptr = pci_map_single(sis_priv->pci_dev,
1161                        skb->data, RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
1162        }
1163        sis_priv->dirty_rx = (unsigned int) (i - NUM_RX_DESC);
1164
1165        /* load Receive Descriptor Register */
1166        outl(sis_priv->rx_ring_dma, ioaddr + rxdp);
1167        if (netif_msg_hw(sis_priv))
1168                printk(KERN_DEBUG "%s: RX descriptor register loaded with: %8.8x\n",
1169                       net_dev->name, inl(ioaddr + rxdp));
1170}
1171
1172/**
1173 *        sis630_set_eq - set phy equalizer value for 630 LAN
1174 *        @net_dev: the net device to set equalizer value
1175 *        @revision: 630 LAN revision number
1176 *
1177 *        630E equalizer workaround rule(Cyrus Huang 08/15)
1178 *        PHY register 14h(Test)
1179 *        Bit 14: 0 -- Automatically dectect (default)
1180 *                1 -- Manually set Equalizer filter
1181 *        Bit 13: 0 -- (Default)
1182 *                1 -- Speed up convergence of equalizer setting
1183 *        Bit 9 : 0 -- (Default)
1184 *                1 -- Disable Baseline Wander
1185 *        Bit 3~7   -- Equalizer filter setting
1186 *        Link ON: Set Bit 9, 13 to 1, Bit 14 to 0
1187 *        Then calculate equalizer value
1188 *        Then set equalizer value, and set Bit 14 to 1, Bit 9 to 0
1189 *        Link Off:Set Bit 13 to 1, Bit 14 to 0
1190 *        Calculate Equalizer value:
1191 *        When Link is ON and Bit 14 is 0, SIS900PHY will auto-dectect proper equalizer value.
1192 *        When the equalizer is stable, this value is not a fixed value. It will be within
1193 *        a small range(eg. 7~9). Then we get a minimum and a maximum value(eg. min=7, max=9)
1194 *        0 <= max <= 4  --> set equalizer to max
1195 *        5 <= max <= 14 --> set equalizer to max+1 or set equalizer to max+2 if max == min
1196 *        max >= 15      --> set equalizer to max+5 or set equalizer to max+6 if max == min
1197 */
1198
1199static void sis630_set_eq(struct net_device *net_dev, u8 revision)
1200{
1201        struct sis900_private *sis_priv = net_dev->priv;
1202        u16 reg14h, eq_value=0, max_value=0, min_value=0;
1203        int i, maxcount=10;
1204
1205        if ( !(revision == SIS630E_900_REV || revision == SIS630EA1_900_REV ||
1206               revision == SIS630A_900_REV || revision ==  SIS630ET_900_REV) )
1207                return;
1208
1209        if (netif_carrier_ok(net_dev)) {
1210                reg14h = mdio_read(net_dev, sis_priv->cur_phy, MII_RESV);
1211                mdio_write(net_dev, sis_priv->cur_phy, MII_RESV,
1212                                        (0x2200 | reg14h) & 0xBFFF);
1213                for (i=0; i < maxcount; i++) {
1214                        eq_value = (0x00F8 & mdio_read(net_dev,
1215                                        sis_priv->cur_phy, MII_RESV)) >> 3;
1216                        if (i == 0)
1217                                max_value=min_value=eq_value;
1218                        max_value = (eq_value > max_value) ?
1219                                                eq_value : max_value;
1220                        min_value = (eq_value < min_value) ?
1221                                                eq_value : min_value;
1222                }
1223                /* 630E rule to determine the equalizer value */
1224                if (revision == SIS630E_900_REV || revision == SIS630EA1_900_REV ||
1225                    revision == SIS630ET_900_REV) {
1226                        if (max_value < 5)
1227                                eq_value = max_value;
1228                        else if (max_value >= 5 && max_value < 15)
1229                                eq_value = (max_value == min_value) ?
1230                                                max_value+2 : max_value+1;
1231                        else if (max_value >= 15)
1232                                eq_value=(max_value == min_value) ?
1233                                                max_value+6 : max_value+5;
1234                }
1235                /* 630B0&B1 rule to determine the equalizer value */
1236                if (revision == SIS630A_900_REV &&
1237                    (sis_priv->host_bridge_rev == SIS630B0 ||
1238                     sis_priv->host_bridge_rev == SIS630B1)) {
1239                        if (max_value == 0)
1240                                eq_value = 3;
1241                        else
1242                                eq_value = (max_value + min_value + 1)/2;
1243                }
1244                /* write equalizer value and setting */
1245                reg14h = mdio_read(net_dev, sis_priv->cur_phy, MII_RESV);
1246                reg14h = (reg14h & 0xFF07) | ((eq_value << 3) & 0x00F8);
1247                reg14h = (reg14h | 0x6000) & 0xFDFF;
1248                mdio_write(net_dev, sis_priv->cur_phy, MII_RESV, reg14h);
1249        } else {
1250                reg14h = mdio_read(net_dev, sis_priv->cur_phy, MII_RESV);
1251                if (revision == SIS630A_900_REV &&
1252                    (sis_priv->host_bridge_rev == SIS630B0 ||
1253                     sis_priv->host_bridge_rev == SIS630B1))
1254                        mdio_write(net_dev, sis_priv->cur_phy, MII_RESV,
1255                                                (reg14h | 0x2200) & 0xBFFF);
1256                else
1257                        mdio_write(net_dev, sis_priv->cur_phy, MII_RESV,
1258                                                (reg14h | 0x2000) & 0xBFFF);
1259        }
1260        return;
1261}
1262
1263/**
1264 *        sis900_timer - sis900 timer routine
1265 *        @data: pointer to sis900 net device
1266 *
1267 *        On each timer ticks we check two things,
1268 *        link status (ON/OFF) and link mode (10/100/Full/Half)
1269 */
1270
1271static void sis900_timer(unsigned long data)
1272{
1273        struct net_device *net_dev = (struct net_device *)data;
1274        struct sis900_private *sis_priv = net_dev->priv;
1275        struct mii_phy *mii_phy = sis_priv->mii;
1276        static const int next_tick = 5*HZ;
1277        u16 status;
1278
1279        if (!sis_priv->autong_complete){
1280                int speed, duplex = 0;
1281
1282                sis900_read_mode(net_dev, &speed, &duplex);
1283                if (duplex){
1284                        sis900_set_mode(net_dev->base_addr, speed, duplex);
1285                        sis630_set_eq(net_dev, sis_priv->chipset_rev);
1286                        netif_start_queue(net_dev);
1287                }
1288
1289                sis_priv->timer.expires = jiffies + HZ;
1290                add_timer(&sis_priv->timer);
1291                return;
1292        }
1293
1294        status = mdio_read(net_dev, sis_priv->cur_phy, MII_STATUS);
1295        status = mdio_read(net_dev, sis_priv->cur_phy, MII_STATUS);
1296
1297        /* Link OFF -> ON */
1298        if (!netif_carrier_ok(net_dev)) {
1299        LookForLink:
1300                /* Search for new PHY */
1301                status = sis900_default_phy(net_dev);
1302                mii_phy = sis_priv->mii;
1303
1304                if (status & MII_STAT_LINK){
1305                        sis900_check_mode(net_dev, mii_phy);
1306                        netif_carrier_on(net_dev);
1307                }
1308        } else {
1309        /* Link ON -> OFF */
1310                if (!(status & MII_STAT_LINK)){
1311                        netif_carrier_off(net_dev);
1312                        if(netif_msg_link(sis_priv))
1313                                printk(KERN_INFO "%s: Media Link Off\n", net_dev->name);
1314
1315                        /* Change mode issue */
1316                        if ((mii_phy->phy_id0 == 0x001D) &&
1317                            ((mii_phy->phy_id1 & 0xFFF0) == 0x8000))
1318                                       sis900_reset_phy(net_dev,  sis_priv->cur_phy);
1319
1320                        sis630_set_eq(net_dev, sis_priv->chipset_rev);
1321
1322                        goto LookForLink;
1323                }
1324        }
1325
1326        sis_priv->timer.expires = jiffies + next_tick;
1327        add_timer(&sis_priv->timer);
1328}
1329
1330/**
1331 *        sis900_check_mode - check the media mode for sis900
1332 *        @net_dev: the net device to be checked
1333 *        @mii_phy: the mii phy
1334 *
1335 *        Older driver gets the media mode from mii status output
1336 *        register. Now we set our media capability and auto-negotiate
1337 *        to get the upper bound of speed and duplex between two ends.
1338 *        If the types of mii phy is HOME, it doesn't need to auto-negotiate
1339 *        and autong_complete should be set to 1.
1340 */
1341
1342static void sis900_check_mode(struct net_device *net_dev, struct mii_phy *mii_phy)
1343{
1344        struct sis900_private *sis_priv = net_dev->priv;
1345        long ioaddr = net_dev->base_addr;
1346        int speed, duplex;
1347
1348        if (mii_phy->phy_types == LAN) {
1349                outl(~EXD & inl(ioaddr + cfg), ioaddr + cfg);
1350                sis900_set_capability(net_dev , mii_phy);
1351                sis900_auto_negotiate(net_dev, sis_priv->cur_phy);
1352        } else {
1353                outl(EXD | inl(ioaddr + cfg), ioaddr + cfg);
1354                speed = HW_SPEED_HOME;
1355                duplex = FDX_CAPABLE_HALF_SELECTED;
1356                sis900_set_mode(ioaddr, speed, duplex);
1357                sis_priv->autong_complete = 1;
1358        }
1359}
1360
1361/**
1362 *        sis900_set_mode - Set the media mode of mac register.
1363 *        @ioaddr: the address of the device
1364 *        @speed : the transmit speed to be determined
1365 *        @duplex: the duplex mode to be determined
1366 *
1367 *        Set the media mode of mac register txcfg/rxcfg according to
1368 *        speed and duplex of phy. Bit EDB_MASTER_EN indicates the EDB
1369 *        bus is used instead of PCI bus. When this bit is set 1, the
1370 *        Max DMA Burst Size for TX/RX DMA should be no larger than 16
1371 *        double words.
1372 */
1373
1374static void sis900_set_mode (long ioaddr, int speed, int duplex)
1375{
1376        u32 tx_flags = 0, rx_flags = 0;
1377
1378        if (inl(ioaddr + cfg) & EDB_MASTER_EN) {
1379                tx_flags = TxATP | (DMA_BURST_64 << TxMXDMA_shift) |
1380                                        (TX_FILL_THRESH << TxFILLT_shift);
1381                rx_flags = DMA_BURST_64 << RxMXDMA_shift;
1382        } else {
1383                tx_flags = TxATP | (DMA_BURST_512 << TxMXDMA_shift) |
1384                                        (TX_FILL_THRESH << TxFILLT_shift);
1385                rx_flags = DMA_BURST_512 << RxMXDMA_shift;
1386        }
1387
1388        if (speed == HW_SPEED_HOME || speed == HW_SPEED_10_MBPS) {
1389                rx_flags |= (RxDRNT_10 << RxDRNT_shift);
1390                tx_flags |= (TxDRNT_10 << TxDRNT_shift);
1391        } else {
1392                rx_flags |= (RxDRNT_100 << RxDRNT_shift);
1393                tx_flags |= (TxDRNT_100 << TxDRNT_shift);
1394        }
1395
1396        if (duplex == FDX_CAPABLE_FULL_SELECTED) {
1397                tx_flags |= (TxCSI | TxHBI);
1398                rx_flags |= RxATX;
1399        }
1400
1401#if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
1402        /* Can accept Jumbo packet */
1403        rx_flags |= RxAJAB;
1404#endif
1405
1406        outl (tx_flags, ioaddr + txcfg);
1407        outl (rx_flags, ioaddr + rxcfg);
1408}
1409
1410/**
1411 *        sis900_auto_negotiate - Set the Auto-Negotiation Enable/Reset bit.
1412 *        @net_dev: the net device to read mode for
1413 *        @phy_addr: mii phy address
1414 *
1415 *        If the adapter is link-on, set the auto-negotiate enable/reset bit.
1416 *        autong_complete should be set to 0 when starting auto-negotiation.
1417 *        autong_complete should be set to 1 if we didn't start auto-negotiation.
1418 *        sis900_timer will wait for link on again if autong_complete = 0.
1419 */
1420
1421static void sis900_auto_negotiate(struct net_device *net_dev, int phy_addr)
1422{
1423        struct sis900_private *sis_priv = net_dev->priv;
1424        int i = 0;
1425        u32 status;
1426
1427        for (i = 0; i < 2; i++)
1428                status = mdio_read(net_dev, phy_addr, MII_STATUS);
1429
1430        if (!(status & MII_STAT_LINK)){
1431                if(netif_msg_link(sis_priv))
1432                        printk(KERN_INFO "%s: Media Link Off\n", net_dev->name);
1433                sis_priv->autong_complete = 1;
1434                netif_carrier_off(net_dev);
1435                return;
1436        }
1437
1438        /* (Re)start AutoNegotiate */
1439        mdio_write(net_dev, phy_addr, MII_CONTROL,
1440                   MII_CNTL_AUTO | MII_CNTL_RST_AUTO);
1441        sis_priv->autong_complete = 0;
1442}
1443
1444
1445/**
1446 *        sis900_read_mode - read media mode for sis900 internal phy
1447 *        @net_dev: the net device to read mode for
1448 *        @speed  : the transmit speed to be determined
1449 *        @duplex : the duplex mode to be determined
1450 *
1451 *        The capability of remote end will be put in mii register autorec
1452 *        after auto-negotiation. Use AND operation to get the upper bound
1453 *        of speed and duplex between two ends.
1454 */
1455
1456static void sis900_read_mode(struct net_device *net_dev, int *speed, int *duplex)
1457{
1458        struct sis900_private *sis_priv = net_dev->priv;
1459        struct mii_phy *phy = sis_priv->mii;
1460        int phy_addr = sis_priv->cur_phy;
1461        u32 status;
1462        u16 autoadv, autorec;
1463        int i;
1464
1465        for (i = 0; i < 2; i++)
1466                status = mdio_read(net_dev, phy_addr, MII_STATUS);
1467
1468        if (!(status & MII_STAT_LINK))
1469                return;
1470
1471        /* AutoNegotiate completed */
1472        autoadv = mdio_read(net_dev, phy_addr, MII_ANADV);
1473        autorec = mdio_read(net_dev, phy_addr, MII_ANLPAR);
1474        status = autoadv & autorec;
1475
1476        *speed = HW_SPEED_10_MBPS;
1477        *duplex = FDX_CAPABLE_HALF_SELECTED;
1478
1479        if (status & (MII_NWAY_TX | MII_NWAY_TX_FDX))
1480                *speed = HW_SPEED_100_MBPS;
1481        if (status & ( MII_NWAY_TX_FDX | MII_NWAY_T_FDX))
1482                *duplex = FDX_CAPABLE_FULL_SELECTED;
1483
1484        sis_priv->autong_complete = 1;
1485
1486        /* Workaround for Realtek RTL8201 PHY issue */
1487        if ((phy->phy_id0 == 0x0000) && ((phy->phy_id1 & 0xFFF0) == 0x8200)) {
1488                if (mdio_read(net_dev, phy_addr, MII_CONTROL) & MII_CNTL_FDX)
1489                        *duplex = FDX_CAPABLE_FULL_SELECTED;
1490                if (mdio_read(net_dev, phy_addr, 0x0019) & 0x01)
1491                        *speed = HW_SPEED_100_MBPS;
1492        }
1493
1494        if(netif_msg_link(sis_priv))
1495                printk(KERN_INFO "%s: Media Link On %s %s-duplex \n",
1496                                               net_dev->name,
1497                                               *speed == HW_SPEED_100_MBPS ?
1498                                                       "100mbps" : "10mbps",
1499                                               *duplex == FDX_CAPABLE_FULL_SELECTED ?
1500                                                       "full" : "half");
1501}
1502
1503/**
1504 *        sis900_tx_timeout - sis900 transmit timeout routine
1505 *        @net_dev: the net device to transmit
1506 *
1507 *        print transmit timeout status
1508 *        disable interrupts and do some tasks
1509 */
1510
1511static void sis900_tx_timeout(struct net_device *net_dev)
1512{
1513        struct sis900_private *sis_priv = net_dev->priv;
1514        long ioaddr = net_dev->base_addr;
1515        unsigned long flags;
1516        int i;
1517
1518        if(netif_msg_tx_err(sis_priv))
1519                printk(KERN_INFO "%s: Transmit timeout, status %8.8x %8.8x \n",
1520                               net_dev->name, inl(ioaddr + cr), inl(ioaddr + isr));
1521
1522        /* Disable interrupts by clearing the interrupt mask. */
1523        outl(0x0000, ioaddr + imr);
1524
1525        /* use spinlock to prevent interrupt handler accessing buffer ring */
1526        spin_lock_irqsave(&sis_priv->lock, flags);
1527
1528        /* discard unsent packets */
1529        sis_priv->dirty_tx = sis_priv->cur_tx = 0;
1530        for (i = 0; i < NUM_TX_DESC; i++) {
1531                struct sk_buff *skb = sis_priv->tx_skbuff[i];
1532
1533                if (skb) {
1534                        pci_unmap_single(sis_priv->pci_dev,
1535                                sis_priv->tx_ring[i].bufptr, skb->len,
1536                                PCI_DMA_TODEVICE);
1537                        dev_kfree_skb_irq(skb);
1538                        sis_priv->tx_skbuff[i] = NULL;
1539                        sis_priv->tx_ring[i].cmdsts = 0;
1540                        sis_priv->tx_ring[i].bufptr = 0;
1541                        net_dev->stats.tx_dropped++;
1542                }
1543        }
1544        sis_priv->tx_full = 0;
1545        netif_wake_queue(net_dev);
1546
1547        spin_unlock_irqrestore(&sis_priv->lock, flags);
1548
1549        net_dev->trans_start = jiffies;
1550
1551        /* load Transmit Descriptor Register */
1552        outl(sis_priv->tx_ring_dma, ioaddr + txdp);
1553
1554        /* Enable all known interrupts by setting the interrupt mask. */
1555        outl((RxSOVR|RxORN|RxERR|RxOK|TxURN|TxERR|TxIDLE), ioaddr + imr);
1556        return;
1557}
1558
1559/**
1560 *        sis900_start_xmit - sis900 start transmit routine
1561 *        @skb: socket buffer pointer to put the data being transmitted
1562 *        @net_dev: the net device to transmit with
1563 *
1564 *        Set the transmit buffer descriptor,
1565 *        and write TxENA to enable transmit state machine.
1566 *        tell upper layer if the buffer is full
1567 */
1568
1569static int
1570sis900_start_xmit(struct sk_buff *skb, struct net_device *net_dev)
1571{
1572        struct sis900_private *sis_priv = net_dev->priv;
1573        long ioaddr = net_dev->base_addr;
1574        unsigned int  entry;
1575        unsigned long flags;
1576        unsigned int  index_cur_tx, index_dirty_tx;
1577        unsigned int  count_dirty_tx;
1578
1579        /* Don't transmit data before the complete of auto-negotiation */
1580        if(!sis_priv->autong_complete){
1581                netif_stop_queue(net_dev);
1582                return 1;
1583        }
1584
1585        spin_lock_irqsave(&sis_priv->lock, flags);
1586
1587        /* Calculate the next Tx descriptor entry. */
1588        entry = sis_priv->cur_tx % NUM_TX_DESC;
1589        sis_priv->tx_skbuff[entry] = skb;
1590
1591        /* set the transmit buffer descriptor and enable Transmit State Machine */
1592        sis_priv->tx_ring[entry].bufptr = pci_map_single(sis_priv->pci_dev,
1593                skb->data, skb->len, PCI_DMA_TODEVICE);
1594        sis_priv->tx_ring[entry].cmdsts = (OWN | skb->len);
1595        outl(TxENA | inl(ioaddr + cr), ioaddr + cr);
1596
1597        sis_priv->cur_tx ++;
1598        index_cur_tx = sis_priv->cur_tx;
1599        index_dirty_tx = sis_priv->dirty_tx;
1600
1601        for (count_dirty_tx = 0; index_cur_tx != index_dirty_tx; index_dirty_tx++)
1602                count_dirty_tx ++;
1603
1604        if (index_cur_tx == index_dirty_tx) {
1605                /* dirty_tx is met in the cycle of cur_tx, buffer full */
1606                sis_priv->tx_full = 1;
1607                netif_stop_queue(net_dev);
1608        } else if (count_dirty_tx < NUM_TX_DESC) {
1609                /* Typical path, tell upper layer that more transmission is possible */
1610                netif_start_queue(net_dev);
1611        } else {
1612                /* buffer full, tell upper layer no more transmission */
1613                sis_priv->tx_full = 1;
1614                netif_stop_queue(net_dev);
1615        }
1616
1617        spin_unlock_irqrestore(&sis_priv->lock, flags);
1618
1619        net_dev->trans_start = jiffies;
1620
1621        if (netif_msg_tx_queued(sis_priv))
1622                printk(KERN_DEBUG "%s: Queued Tx packet at %p size %d "
1623                       "to slot %d.\n",
1624                       net_dev->name, skb->data, (int)skb->len, entry);
1625
1626        return 0;
1627}
1628
1629/**
1630 *        sis900_interrupt - sis900 interrupt handler
1631 *        @irq: the irq number
1632 *        @dev_instance: the client data object
1633 *
1634 *        The interrupt handler does all of the Rx thread work,
1635 *        and cleans up after the Tx thread
1636 */
1637
1638static irqreturn_t sis900_interrupt(int irq, void *dev_instance)
1639{
1640        struct net_device *net_dev = dev_instance;
1641        struct sis900_private *sis_priv = net_dev->priv;
1642        int boguscnt = max_interrupt_work;
1643        long ioaddr = net_dev->base_addr;
1644        u32 status;
1645        unsigned int handled = 0;
1646
1647        spin_lock (&sis_priv->lock);
1648
1649        do {
1650                status = inl(ioaddr + isr);
1651
1652                if ((status & (HIBERR|TxURN|TxERR|TxIDLE|RxORN|RxERR|RxOK)) == 0)
1653                        /* nothing intresting happened */
1654                        break;
1655                handled = 1;
1656
1657                /* why dow't we break after Tx/Rx case ?? keyword: full-duplex */
1658                if (status & (RxORN | RxERR | RxOK))
1659                        /* Rx interrupt */
1660                        sis900_rx(net_dev);
1661
1662                if (status & (TxURN | TxERR | TxIDLE))
1663                        /* Tx interrupt */
1664                        sis900_finish_xmit(net_dev);
1665
1666                /* something strange happened !!! */
1667                if (status & HIBERR) {
1668                        if(netif_msg_intr(sis_priv))
1669                                printk(KERN_INFO "%s: Abnormal interrupt, "
1670                                        "status %#8.8x.\n", net_dev->name, status);
1671                        break;
1672                }
1673                if (--boguscnt < 0) {
1674                        if(netif_msg_intr(sis_priv))
1675                                printk(KERN_INFO "%s: Too much work at interrupt, "
1676                                        "interrupt status = %#8.8x.\n",
1677                                        net_dev->name, status);
1678                        break;
1679                }
1680        } while (1);
1681
1682        if(netif_msg_intr(sis_priv))
1683                printk(KERN_DEBUG "%s: exiting interrupt, "
1684                       "interrupt status = 0x%#8.8x.\n",
1685                       net_dev->name, inl(ioaddr + isr));
1686
1687        spin_unlock (&sis_priv->lock);
1688        return IRQ_RETVAL(handled);
1689}
1690
1691/**
1692 *        sis900_rx - sis900 receive routine
1693 *        @net_dev: the net device which receives data
1694 *
1695 *        Process receive interrupt events,
1696 *        put buffer to higher layer and refill buffer pool
1697 *        Note: This function is called by interrupt handler,
1698 *        don't do "too much" work here
1699 */
1700
1701static int sis900_rx(struct net_device *net_dev)
1702{
1703        struct sis900_private *sis_priv = net_dev->priv;
1704        long ioaddr = net_dev->base_addr;
1705        unsigned int entry = sis_priv->cur_rx % NUM_RX_DESC;
1706        u32 rx_status = sis_priv->rx_ring[entry].cmdsts;
1707        int rx_work_limit;
1708
1709        if (netif_msg_rx_status(sis_priv))
1710                printk(KERN_DEBUG "sis900_rx, cur_rx:%4.4d, dirty_rx:%4.4d "
1711                       "status:0x%8.8x\n",
1712                       sis_priv->cur_rx, sis_priv->dirty_rx, rx_status);
1713        rx_work_limit = sis_priv->dirty_rx + NUM_RX_DESC - sis_priv->cur_rx;
1714
1715        while (rx_status & OWN) {
1716                unsigned int rx_size;
1717                unsigned int data_size;
1718
1719                if (--rx_work_limit < 0)
1720                        break;
1721
1722                data_size = rx_status & DSIZE;
1723                rx_size = data_size - CRC_SIZE;
1724
1725#if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
1726                /* ``TOOLONG'' flag means jumbo packet recived. */
1727                if ((rx_status & TOOLONG) && data_size <= MAX_FRAME_SIZE)
1728                        rx_status &= (~ ((unsigned int)TOOLONG));
1729#endif
1730
1731                if (rx_status & (ABORT|OVERRUN|TOOLONG|RUNT|RXISERR|CRCERR|FAERR)) {
1732                        /* corrupted packet received */
1733                        if (netif_msg_rx_err(sis_priv))
1734                                printk(KERN_DEBUG "%s: Corrupted packet "
1735                                       "received, buffer status = 0x%8.8x/%d.\n",
1736                                       net_dev->name, rx_status, data_size);
1737                        net_dev->stats.rx_errors++;
1738                        if (rx_status & OVERRUN)
1739                                net_dev->stats.rx_over_errors++;
1740                        if (rx_status & (TOOLONG|RUNT))
1741                                net_dev->stats.rx_length_errors++;
1742                        if (rx_status & (RXISERR | FAERR))
1743                                net_dev->stats.rx_frame_errors++;
1744                        if (rx_status & CRCERR)
1745                                net_dev->stats.rx_crc_errors++;
1746                        /* reset buffer descriptor state */
1747                        sis_priv->rx_ring[entry].cmdsts = RX_BUF_SIZE;
1748                } else {
1749                        struct sk_buff * skb;
1750                        struct sk_buff * rx_skb;
1751
1752                        pci_unmap_single(sis_priv->pci_dev,
1753                                sis_priv->rx_ring[entry].bufptr, RX_BUF_SIZE,
1754                                PCI_DMA_FROMDEVICE);
1755
1756                        /* refill the Rx buffer, what if there is not enought
1757                         * memory for new socket buffer ?? */
1758                        if ((skb = dev_alloc_skb(RX_BUF_SIZE)) == NULL) {
1759                                /*
1760                                 * Not enough memory to refill the buffer
1761                                 * so we need to recycle the old one so
1762                                 * as to avoid creating a memory hole
1763                                 * in the rx ring
1764                                 */
1765                                skb = sis_priv->rx_skbuff[entry];
1766                                net_dev->stats.rx_dropped++;
1767                                goto refill_rx_ring;
1768                        }
1769
1770                        /* This situation should never happen, but due to
1771                           some unknow bugs, it is possible that
1772                           we are working on NULL sk_buff :-( */
1773                        if (sis_priv->rx_skbuff[entry] == NULL) {
1774                                if (netif_msg_rx_err(sis_priv))
1775                                        printk(KERN_WARNING "%s: NULL pointer "
1776                                              "encountered in Rx ring\n"
1777                                              "cur_rx:%4.4d, dirty_rx:%4.4d\n",
1778                                              net_dev->name, sis_priv->cur_rx,
1779                                              sis_priv->dirty_rx);
1780                                break;
1781                        }
1782
1783                        /* give the socket buffer to upper layers */
1784                        rx_skb = sis_priv->rx_skbuff[entry];
1785                        skb_put(rx_skb, rx_size);
1786                        rx_skb->protocol = eth_type_trans(rx_skb, net_dev);
1787                        netif_rx(rx_skb);
1788
1789                        /* some network statistics */
1790                        if ((rx_status & BCAST) == MCAST)
1791                                net_dev->stats.multicast++;
1792                        net_dev->last_rx = jiffies;
1793                        net_dev->stats.rx_bytes += rx_size;
1794                        net_dev->stats.rx_packets++;
1795                        sis_priv->dirty_rx++;
1796refill_rx_ring:
1797                        sis_priv->rx_skbuff[entry] = skb;
1798                        sis_priv->rx_ring[entry].cmdsts = RX_BUF_SIZE;
1799                        sis_priv->rx_ring[entry].bufptr =
1800                                pci_map_single(sis_priv->pci_dev, skb->data,
1801                                        RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
1802                }
1803                sis_priv->cur_rx++;
1804                entry = sis_priv->cur_rx % NUM_RX_DESC;
1805                rx_status = sis_priv->rx_ring[entry].cmdsts;
1806        } // while
1807
1808        /* refill the Rx buffer, what if the rate of refilling is slower
1809         * than consuming ?? */
1810        for (; sis_priv->cur_rx != sis_priv->dirty_rx; sis_priv->dirty_rx++) {
1811                struct sk_buff *skb;
1812
1813                entry = sis_priv->dirty_rx % NUM_RX_DESC;
1814
1815                if (sis_priv->rx_skbuff[entry] == NULL) {
1816                        if ((skb = dev_alloc_skb(RX_BUF_SIZE)) == NULL) {
1817                                /* not enough memory for skbuff, this makes a
1818                                 * "hole" on the buffer ring, it is not clear
1819                                 * how the hardware will react to this kind
1820                                 * of degenerated buffer */
1821                                if (netif_msg_rx_err(sis_priv))
1822                                        printk(KERN_INFO "%s: Memory squeeze, "
1823                                                "deferring packet.\n",
1824                                                net_dev->name);
1825                                net_dev->stats.rx_dropped++;
1826                                break;
1827                        }
1828                        sis_priv->rx_skbuff[entry] = skb;
1829                        sis_priv->rx_ring[entry].cmdsts = RX_BUF_SIZE;
1830                        sis_priv->rx_ring[entry].bufptr =
1831                                pci_map_single(sis_priv->pci_dev, skb->data,
1832                                        RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
1833                }
1834        }
1835        /* re-enable the potentially idle receive state matchine */
1836        outl(RxENA | inl(ioaddr + cr), ioaddr + cr );
1837
1838        return 0;
1839}
1840
1841/**
1842 *        sis900_finish_xmit - finish up transmission of packets
1843 *        @net_dev: the net device to be transmitted on
1844 *
1845 *        Check for error condition and free socket buffer etc
1846 *        schedule for more transmission as needed
1847 *        Note: This function is called by interrupt handler,
1848 *        don't do "too much" work here
1849 */
1850
1851static void sis900_finish_xmit (struct net_device *net_dev)
1852{
1853        struct sis900_private *sis_priv = net_dev->priv;
1854
1855        for (; sis_priv->dirty_tx != sis_priv->cur_tx; sis_priv->dirty_tx++) {
1856                struct sk_buff *skb;
1857                unsigned int entry;
1858                u32 tx_status;
1859
1860                entry = sis_priv->dirty_tx % NUM_TX_DESC;
1861                tx_status = sis_priv->tx_ring[entry].cmdsts;
1862
1863                if (tx_status & OWN) {
1864                        /* The packet is not transmitted yet (owned by hardware) !
1865                         * Note: the interrupt is generated only when Tx Machine
1866                         * is idle, so this is an almost impossible case */
1867                        break;
1868                }
1869
1870                if (tx_status & (ABORT | UNDERRUN | OWCOLL)) {
1871                        /* packet unsuccessfully transmitted */
1872                        if (netif_msg_tx_err(sis_priv))
1873                                printk(KERN_DEBUG "%s: Transmit "
1874                                       "error, Tx status %8.8x.\n",
1875                                       net_dev->name, tx_status);
1876                        net_dev->stats.tx_errors++;
1877                        if (tx_status & UNDERRUN)
1878                                net_dev->stats.tx_fifo_errors++;
1879                        if (tx_status & ABORT)
1880                                net_dev->stats.tx_aborted_errors++;
1881                        if (tx_status & NOCARRIER)
1882                                net_dev->stats.tx_carrier_errors++;
1883                        if (tx_status & OWCOLL)
1884                                net_dev->stats.tx_window_errors++;
1885                } else {
1886                        /* packet successfully transmitted */
1887                        net_dev->stats.collisions += (tx_status & COLCNT) >> 16;
1888                        net_dev->stats.tx_bytes += tx_status & DSIZE;
1889                        net_dev->stats.tx_packets++;
1890                }
1891                /* Free the original skb. */
1892                skb = sis_priv->tx_skbuff[entry];
1893                pci_unmap_single(sis_priv->pci_dev,
1894                        sis_priv->tx_ring[entry].bufptr, skb->len,
1895                        PCI_DMA_TODEVICE);
1896                dev_kfree_skb_irq(skb);
1897                sis_priv->tx_skbuff[entry] = NULL;
1898                sis_priv->tx_ring[entry].bufptr = 0;
1899                sis_priv->tx_ring[entry].cmdsts = 0;
1900        }
1901
1902        if (sis_priv->tx_full && netif_queue_stopped(net_dev) &&
1903            sis_priv->cur_tx - sis_priv->dirty_tx < NUM_TX_DESC - 4) {
1904                /* The ring is no longer full, clear tx_full and schedule
1905                 * more transmission by netif_wake_queue(net_dev) */
1906                sis_priv->tx_full = 0;
1907                netif_wake_queue (net_dev);
1908        }
1909}
1910
1911/**
1912 *        sis900_close - close sis900 device
1913 *        @net_dev: the net device to be closed
1914 *
1915 *        Disable interrupts, stop the Tx and Rx Status Machine
1916 *        free Tx and RX socket buffer
1917 */
1918
1919static int sis900_close(struct net_device *net_dev)
1920{
1921        long ioaddr = net_dev->base_addr;
1922        struct sis900_private *sis_priv = net_dev->priv;
1923        struct sk_buff *skb;
1924        int i;
1925
1926        netif_stop_queue(net_dev);
1927
1928        /* Disable interrupts by clearing the interrupt mask. */
1929        outl(0x0000, ioaddr + imr);
1930        outl(0x0000, ioaddr + ier);
1931
1932        /* Stop the chip's Tx and Rx Status Machine */
1933        outl(RxDIS | TxDIS | inl(ioaddr + cr), ioaddr + cr);
1934
1935        del_timer(&sis_priv->timer);
1936
1937        free_irq(net_dev->irq, net_dev);
1938
1939        /* Free Tx and RX skbuff */
1940        for (i = 0; i < NUM_RX_DESC; i++) {
1941                skb = sis_priv->rx_skbuff[i];
1942                if (skb) {
1943                        pci_unmap_single(sis_priv->pci_dev,
1944                                sis_priv->rx_ring[i].bufptr,
1945                                RX_BUF_SIZE, PCI_DMA_FROMDEVICE);
1946                        dev_kfree_skb(skb);
1947                        sis_priv->rx_skbuff[i] = NULL;
1948                }
1949        }
1950        for (i = 0; i < NUM_TX_DESC; i++) {
1951                skb = sis_priv->tx_skbuff[i];
1952                if (skb) {
1953                        pci_unmap_single(sis_priv->pci_dev,
1954                                sis_priv->tx_ring[i].bufptr, skb->len,
1955                                PCI_DMA_TODEVICE);
1956                        dev_kfree_skb(skb);
1957                        sis_priv->tx_skbuff[i] = NULL;
1958                }
1959        }
1960
1961        /* Green! Put the chip in low-power mode. */
1962
1963        return 0;
1964}
1965
1966/**
1967 *        sis900_get_drvinfo - Return information about driver
1968 *        @net_dev: the net device to probe
1969 *        @info: container for info returned
1970 *
1971 *        Process ethtool command such as "ehtool -i" to show information
1972 */
1973
1974static void sis900_get_drvinfo(struct net_device *net_dev,
1975                               struct ethtool_drvinfo *info)
1976{
1977         struct sis900_private *sis_priv = net_dev->priv;
1978
1979        strcpy (info->driver, SIS900_MODULE_NAME);
1980        strcpy (info->version, SIS900_DRV_VERSION);
1981        strcpy (info->bus_info, pci_name(sis_priv->pci_dev));
1982}
1983
1984static u32 sis900_get_msglevel(struct net_device *net_dev)
1985{
1986        struct sis900_private *sis_priv = net_dev->priv;
1987        return sis_priv->msg_enable;
1988}
1989
1990static void sis900_set_msglevel(struct net_device *net_dev, u32 value)
1991{
1992        struct sis900_private *sis_priv = net_dev->priv;
1993        sis_priv->msg_enable = value;
1994}
1995
1996static u32 sis900_get_link(struct net_device *net_dev)
1997{
1998        struct sis900_private *sis_priv = net_dev->priv;
1999        return mii_link_ok(&sis_priv->mii_info);
2000}
2001
2002static int sis900_get_settings(struct net_device *net_dev,
2003                                struct ethtool_cmd *cmd)
2004{
2005        struct sis900_private *sis_priv = net_dev->priv;
2006        spin_lock_irq(&sis_priv->lock);
2007        mii_ethtool_gset(&sis_priv->mii_info, cmd);
2008        spin_unlock_irq(&sis_priv->lock);
2009        return 0;
2010}
2011
2012static int sis900_set_settings(struct net_device *net_dev,
2013                                struct ethtool_cmd *cmd)
2014{
2015        struct sis900_private *sis_priv = net_dev->priv;
2016        int rt;
2017        spin_lock_irq(&sis_priv->lock);
2018        rt = mii_ethtool_sset(&sis_priv->mii_info, cmd);
2019        spin_unlock_irq(&sis_priv->lock);
2020        return rt;
2021}
2022
2023static int sis900_nway_reset(struct net_device *net_dev)
2024{
2025        struct sis900_private *sis_priv = net_dev->priv;
2026        return mii_nway_restart(&sis_priv->mii_info);
2027}
2028
2029/**
2030 *        sis900_set_wol - Set up Wake on Lan registers
2031 *        @net_dev: the net device to probe
2032 *        @wol: container for info passed to the driver
2033 *
2034 *        Process ethtool command "wol" to setup wake on lan features.
2035 *        SiS900 supports sending WoL events if a correct packet is received,
2036 *        but there is no simple way to filter them to only a subset (broadcast,
2037 *        multicast, unicast or arp).
2038 */
2039
2040static int sis900_set_wol(struct net_device *net_dev, struct ethtool_wolinfo *wol)
2041{
2042        struct sis900_private *sis_priv = net_dev->priv;
2043        long pmctrl_addr = net_dev->base_addr + pmctrl;
2044        u32 cfgpmcsr = 0, pmctrl_bits = 0;
2045
2046        if (wol->wolopts == 0) {
2047                pci_read_config_dword(sis_priv->pci_dev, CFGPMCSR, &cfgpmcsr);
2048                cfgpmcsr &= ~PME_EN;
2049                pci_write_config_dword(sis_priv->pci_dev, CFGPMCSR, cfgpmcsr);
2050                outl(pmctrl_bits, pmctrl_addr);
2051                if (netif_msg_wol(sis_priv))
2052                        printk(KERN_DEBUG "%s: Wake on LAN disabled\n", net_dev->name);
2053                return 0;
2054        }
2055
2056        if (wol->wolopts & (WAKE_MAGICSECURE | WAKE_UCAST | WAKE_MCAST
2057                                | WAKE_BCAST | WAKE_ARP))
2058                return -EINVAL;
2059
2060        if (wol->wolopts & WAKE_MAGIC)
2061                pmctrl_bits |= MAGICPKT;
2062        if (wol->wolopts & WAKE_PHY)
2063                pmctrl_bits |= LINKON;
2064
2065        outl(pmctrl_bits, pmctrl_addr);
2066
2067        pci_read_config_dword(sis_priv->pci_dev, CFGPMCSR, &cfgpmcsr);
2068        cfgpmcsr |= PME_EN;
2069        pci_write_config_dword(sis_priv->pci_dev, CFGPMCSR, cfgpmcsr);
2070        if (netif_msg_wol(sis_priv))
2071                printk(KERN_DEBUG "%s: Wake on LAN enabled\n", net_dev->name);
2072
2073        return 0;
2074}
2075
2076static void sis900_get_wol(struct net_device *net_dev, struct ethtool_wolinfo *wol)
2077{
2078        long pmctrl_addr = net_dev->base_addr + pmctrl;
2079        u32 pmctrl_bits;
2080
2081        pmctrl_bits = inl(pmctrl_addr);
2082        if (pmctrl_bits & MAGICPKT)
2083                wol->wolopts |= WAKE_MAGIC;
2084        if (pmctrl_bits & LINKON)
2085                wol->wolopts |= WAKE_PHY;
2086
2087        wol->supported = (WAKE_PHY | WAKE_MAGIC);
2088}
2089
2090static const struct ethtool_ops sis900_ethtool_ops = {
2091        .get_drvinfo         = sis900_get_drvinfo,
2092        .get_msglevel        = sis900_get_msglevel,
2093        .set_msglevel        = sis900_set_msglevel,
2094        .get_link        = sis900_get_link,
2095        .get_settings        = sis900_get_settings,
2096        .set_settings        = sis900_set_settings,
2097        .nway_reset        = sis900_nway_reset,
2098        .get_wol        = sis900_get_wol,
2099        .set_wol        = sis900_set_wol
2100};
2101
2102/**
2103 *        mii_ioctl - process MII i/o control command
2104 *        @net_dev: the net device to command for
2105 *        @rq: parameter for command
2106 *        @cmd: the i/o command
2107 *
2108 *        Process MII command like read/write MII register
2109 */
2110
2111static int mii_ioctl(struct net_device *net_dev, struct ifreq *rq, int cmd)
2112{
2113        struct sis900_private *sis_priv = net_dev->priv;
2114        struct mii_ioctl_data *data = if_mii(rq);
2115
2116        switch(cmd) {
2117        case SIOCGMIIPHY:                /* Get address of MII PHY in use. */
2118                data->phy_id = sis_priv->mii->phy_addr;
2119                /* Fall Through */
2120
2121        case SIOCGMIIREG:                /* Read MII PHY register. */
2122                data->val_out = mdio_read(net_dev, data->phy_id & 0x1f, data->reg_num & 0x1f);
2123                return 0;
2124
2125        case SIOCSMIIREG:                /* Write MII PHY register. */
2126                if (!capable(CAP_NET_ADMIN))
2127                        return -EPERM;
2128                mdio_write(net_dev, data->phy_id & 0x1f, data->reg_num & 0x1f, data->val_in);
2129                return 0;
2130        default:
2131                return -EOPNOTSUPP;
2132        }
2133}
2134
2135/**
2136 *        sis900_set_config - Set media type by net_device.set_config
2137 *        @dev: the net device for media type change
2138 *        @map: ifmap passed by ifconfig
2139 *
2140 *        Set media type to 10baseT, 100baseT or 0(for auto) by ifconfig
2141 *        we support only port changes. All other runtime configuration
2142 *        changes will be ignored
2143 */
2144
2145static int sis900_set_config(struct net_device *dev, struct ifmap *map)
2146{
2147        struct sis900_private *sis_priv = dev->priv;
2148        struct mii_phy *mii_phy = sis_priv->mii;
2149
2150        u16 status;
2151
2152        if ((map->port != (u_char)(-1)) && (map->port != dev->if_port)) {
2153                /* we switch on the ifmap->port field. I couldn't find anything
2154                 * like a definition or standard for the values of that field.
2155                 * I think the meaning of those values is device specific. But
2156                 * since I would like to change the media type via the ifconfig
2157                 * command I use the definition from linux/netdevice.h
2158                 * (which seems to be different from the ifport(pcmcia) definition) */
2159                switch(map->port){
2160                case IF_PORT_UNKNOWN: /* use auto here */
2161                        dev->if_port = map->port;
2162                        /* we are going to change the media type, so the Link
2163                         * will be temporary down and we need to reflect that
2164                         * here. When the Link comes up again, it will be
2165                         * sensed by the sis_timer procedure, which also does
2166                         * all the rest for us */
2167                        netif_carrier_off(dev);
2168
2169                        /* read current state */
2170                        status = mdio_read(dev, mii_phy->phy_addr, MII_CONTROL);
2171
2172                        /* enable auto negotiation and reset the negotioation
2173                         * (I don't really know what the auto negatiotiation
2174                         * reset really means, but it sounds for me right to
2175                         * do one here) */
2176                        mdio_write(dev, mii_phy->phy_addr,
2177                                   MII_CONTROL, status | MII_CNTL_AUTO | MII_CNTL_RST_AUTO);
2178
2179                        break;
2180
2181                case IF_PORT_10BASET: /* 10BaseT */
2182                        dev->if_port = map->port;
2183
2184                        /* we are going to change the media type, so the Link
2185                         * will be temporary down and we need to reflect that
2186                         * here. When the Link comes up again, it will be
2187                         * sensed by the sis_timer procedure, which also does
2188                         * all the rest for us */
2189                        netif_carrier_off(dev);
2190
2191                        /* set Speed to 10Mbps */
2192                        /* read current state */
2193                        status = mdio_read(dev, mii_phy->phy_addr, MII_CONTROL);
2194
2195                        /* disable auto negotiation and force 10MBit mode*/
2196                        mdio_write(dev, mii_phy->phy_addr,
2197                                   MII_CONTROL, status & ~(MII_CNTL_SPEED |
2198                                        MII_CNTL_AUTO));
2199                        break;
2200
2201                case IF_PORT_100BASET: /* 100BaseT */
2202                case IF_PORT_100BASETX: /* 100BaseTx */
2203                        dev->if_port = map->port;
2204
2205                        /* we are going to change the media type, so the Link
2206                         * will be temporary down and we need to reflect that
2207                         * here. When the Link comes up again, it will be
2208                         * sensed by the sis_timer procedure, which also does
2209                         * all the rest for us */
2210                        netif_carrier_off(dev);
2211
2212                        /* set Speed to 100Mbps */
2213                        /* disable auto negotiation and enable 100MBit Mode */
2214                        status = mdio_read(dev, mii_phy->phy_addr, MII_CONTROL);
2215                        mdio_write(dev, mii_phy->phy_addr,
2216                                   MII_CONTROL, (status & ~MII_CNTL_SPEED) |
2217                                   MII_CNTL_SPEED);
2218
2219                        break;
2220
2221                case IF_PORT_10BASE2: /* 10Base2 */
2222                case IF_PORT_AUI: /* AUI */
2223                case IF_PORT_100BASEFX: /* 100BaseFx */
2224                        /* These Modes are not supported (are they?)*/
2225                        return -EOPNOTSUPP;
2226                        break;
2227
2228                default:
2229                        return -EINVAL;
2230                }
2231        }
2232        return 0;
2233}
2234
2235/**
2236 *        sis900_mcast_bitnr - compute hashtable index
2237 *        @addr: multicast address
2238 *        @revision: revision id of chip
2239 *
2240 *        SiS 900 uses the most sigificant 7 bits to index a 128 bits multicast
2241 *        hash table, which makes this function a little bit different from other drivers
2242 *        SiS 900 B0 & 635 M/B uses the most significat 8 bits to index 256 bits
2243 *           multicast hash table.
2244 */
2245
2246static inline u16 sis900_mcast_bitnr(u8 *addr, u8 revision)
2247{
2248
2249        u32 crc = ether_crc(6, addr);
2250
2251        /* leave 8 or 7 most siginifant bits */
2252        if ((revision >= SIS635A_900_REV) || (revision == SIS900B_900_REV))
2253                return ((int)(crc >> 24));
2254        else
2255                return ((int)(crc >> 25));
2256}
2257
2258/**
2259 *        set_rx_mode - Set SiS900 receive mode
2260 *        @net_dev: the net device to be set
2261 *
2262 *        Set SiS900 receive mode for promiscuous, multicast, or broadcast mode.
2263 *        And set the appropriate multicast filter.
2264 *        Multicast hash table changes from 128 to 256 bits for 635M/B & 900B0.
2265 */
2266
2267static void set_rx_mode(struct net_device *net_dev)
2268{
2269        long ioaddr = net_dev->base_addr;
2270        struct sis900_private * sis_priv = net_dev->priv;
2271        u16 mc_filter[16] = {0};        /* 256/128 bits multicast hash table */
2272        int i, table_entries;
2273        u32 rx_mode;
2274
2275        /* 635 Hash Table entries = 256(2^16) */
2276        if((sis_priv->chipset_rev >= SIS635A_900_REV) ||
2277                        (sis_priv->chipset_rev == SIS900B_900_REV))
2278                table_entries = 16;
2279        else
2280                table_entries = 8;
2281
2282        if (net_dev->flags & IFF_PROMISC) {
2283                /* Accept any kinds of packets */
2284                rx_mode = RFPromiscuous;
2285                for (i = 0; i < table_entries; i++)
2286                        mc_filter[i] = 0xffff;
2287        } else if ((net_dev->mc_count > multicast_filter_limit) ||
2288                   (net_dev->flags & IFF_ALLMULTI)) {
2289                /* too many multicast addresses or accept all multicast packet */
2290                rx_mode = RFAAB | RFAAM;
2291                for (i = 0; i < table_entries; i++)
2292                        mc_filter[i] = 0xffff;
2293        } else {
2294                /* Accept Broadcast packet, destination address matchs our
2295                 * MAC address, use Receive Filter to reject unwanted MCAST
2296                 * packets */
2297                struct dev_mc_list *mclist;
2298                rx_mode = RFAAB;
2299                for (i = 0, mclist = net_dev->mc_list;
2300                        mclist && i < net_dev->mc_count;
2301                        i++, mclist = mclist->next) {
2302                        unsigned int bit_nr =
2303                                sis900_mcast_bitnr(mclist->dmi_addr, sis_priv->chipset_rev);
2304                        mc_filter[bit_nr >> 4] |= (1 << (bit_nr & 0xf));
2305                }
2306        }
2307
2308        /* update Multicast Hash Table in Receive Filter */
2309        for (i = 0; i < table_entries; i++) {
2310                /* why plus 0x04 ??, That makes the correct value for hash table. */
2311                outl((u32)(0x00000004+i) << RFADDR_shift, ioaddr + rfcr);
2312                outl(mc_filter[i], ioaddr + rfdr);
2313        }
2314
2315        outl(RFEN | rx_mode, ioaddr + rfcr);
2316
2317        /* sis900 is capable of looping back packets at MAC level for
2318         * debugging purpose */
2319        if (net_dev->flags & IFF_LOOPBACK) {
2320                u32 cr_saved;
2321                /* We must disable Tx/Rx before setting loopback mode */
2322                cr_saved = inl(ioaddr + cr);
2323                outl(cr_saved | TxDIS | RxDIS, ioaddr + cr);
2324                /* enable loopback */
2325                outl(inl(ioaddr + txcfg) | TxMLB, ioaddr + txcfg);
2326                outl(inl(ioaddr + rxcfg) | RxATX, ioaddr + rxcfg);
2327                /* restore cr */
2328                outl(cr_saved, ioaddr + cr);
2329        }
2330
2331        return;
2332}
2333
2334/**
2335 *        sis900_reset - Reset sis900 MAC
2336 *        @net_dev: the net device to reset
2337 *
2338 *        reset sis900 MAC and wait until finished
2339 *        reset through command register
2340 *        change backoff algorithm for 900B0 & 635 M/B
2341 */
2342
2343static void sis900_reset(struct net_device *net_dev)
2344{
2345        struct sis900_private * sis_priv = net_dev->priv;
2346        long ioaddr = net_dev->base_addr;
2347        int i = 0;
2348        u32 status = TxRCMP | RxRCMP;
2349
2350        outl(0, ioaddr + ier);
2351        outl(0, ioaddr + imr);
2352        outl(0, ioaddr + rfcr);
2353
2354        outl(RxRESET | TxRESET | RESET | inl(ioaddr + cr), ioaddr + cr);
2355
2356        /* Check that the chip has finished the reset. */
2357        while (status && (i++ < 1000)) {
2358                status ^= (inl(isr + ioaddr) & status);
2359        }
2360
2361        if( (sis_priv->chipset_rev >= SIS635A_900_REV) ||
2362                        (sis_priv->chipset_rev == SIS900B_900_REV) )
2363                outl(PESEL | RND_CNT, ioaddr + cfg);
2364        else
2365                outl(PESEL, ioaddr + cfg);
2366}
2367
2368/**
2369 *        sis900_remove - Remove sis900 device
2370 *        @pci_dev: the pci device to be removed
2371 *
2372 *        remove and release SiS900 net device
2373 */
2374
2375static void __devexit sis900_remove(struct pci_dev *pci_dev)
2376{
2377        struct net_device *net_dev = pci_get_drvdata(pci_dev);
2378        struct sis900_private * sis_priv = net_dev->priv;
2379        struct mii_phy *phy = NULL;
2380
2381        while (sis_priv->first_mii) {
2382                phy = sis_priv->first_mii;
2383                sis_priv->first_mii = phy->next;
2384                kfree(phy);
2385        }
2386
2387        pci_free_consistent(pci_dev, RX_TOTAL_SIZE, sis_priv->rx_ring,
2388                sis_priv->rx_ring_dma);
2389        pci_free_consistent(pci_dev, TX_TOTAL_SIZE, sis_priv->tx_ring,
2390                sis_priv->tx_ring_dma);
2391        unregister_netdev(net_dev);
2392        free_netdev(net_dev);
2393        pci_release_regions(pci_dev);
2394        pci_set_drvdata(pci_dev, NULL);
2395}
2396
2397#ifdef CONFIG_PM
2398
2399static int sis900_suspend(struct pci_dev *pci_dev, pm_message_t state)
2400{
2401        struct net_device *net_dev = pci_get_drvdata(pci_dev);
2402        long ioaddr = net_dev->base_addr;
2403
2404        if(!netif_running(net_dev))
2405                return 0;
2406
2407        netif_stop_queue(net_dev);
2408        netif_device_detach(net_dev);
2409
2410        /* Stop the chip's Tx and Rx Status Machine */
2411        outl(RxDIS | TxDIS | inl(ioaddr + cr), ioaddr + cr);
2412
2413        pci_set_power_state(pci_dev, PCI_D3hot);
2414        pci_save_state(pci_dev);
2415
2416        return 0;
2417}
2418
2419static int sis900_resume(struct pci_dev *pci_dev)
2420{
2421        struct net_device *net_dev = pci_get_drvdata(pci_dev);
2422        struct sis900_private *sis_priv = net_dev->priv;
2423        long ioaddr = net_dev->base_addr;
2424
2425        if(!netif_running(net_dev))
2426                return 0;
2427        pci_restore_state(pci_dev);
2428        pci_set_power_state(pci_dev, PCI_D0);
2429
2430        sis900_init_rxfilter(net_dev);
2431
2432        sis900_init_tx_ring(net_dev);
2433        sis900_init_rx_ring(net_dev);
2434
2435        set_rx_mode(net_dev);
2436
2437        netif_device_attach(net_dev);
2438        netif_start_queue(net_dev);
2439
2440        /* Workaround for EDB */
2441        sis900_set_mode(ioaddr, HW_SPEED_10_MBPS, FDX_CAPABLE_HALF_SELECTED);
2442
2443        /* Enable all known interrupts by setting the interrupt mask. */
2444        outl((RxSOVR|RxORN|RxERR|RxOK|TxURN|TxERR|TxIDLE), ioaddr + imr);
2445        outl(RxENA | inl(ioaddr + cr), ioaddr + cr);
2446        outl(IE, ioaddr + ier);
2447
2448        sis900_check_mode(net_dev, sis_priv->mii);
2449
2450        return 0;
2451}
2452#endif /* CONFIG_PM */
2453
2454static struct pci_driver sis900_pci_driver = {
2455        .name                = SIS900_MODULE_NAME,
2456        .id_table        = sis900_pci_tbl,
2457        .probe                = sis900_probe,
2458        .remove                = __devexit_p(sis900_remove),
2459#ifdef CONFIG_PM
2460        .suspend        = sis900_suspend,
2461        .resume                = sis900_resume,
2462#endif /* CONFIG_PM */
2463};
2464
2465static int __init sis900_init_module(void)
2466{
2467/* when a module, this is printed whether or not devices are found in probe */
2468#ifdef MODULE
2469        printk(version);
2470#endif
2471
2472        return pci_register_driver(&sis900_pci_driver);
2473}
2474
2475static void __exit sis900_cleanup_module(void)
2476{
2477        pci_unregister_driver(&sis900_pci_driver);
2478}
2479
2480module_init(sis900_init_module);
2481module_exit(sis900_cleanup_module);
2482