Showing error 971

User: Jiri Slaby
Error type: Leaving function in locked state
Error type description: Some lock is not unlocked on all paths of a function, so it is leaked
File location: fs/ubifs/journal.c
Line in file: 136
Project: Linux Kernel
Project version: 2.6.28
Tools: Stanse (1.2)
Entered: 2012-03-02 21:35:17 UTC


Source:

   1/*
   2 * This file is part of UBIFS.
   3 *
   4 * Copyright (C) 2006-2008 Nokia Corporation.
   5 *
   6 * This program is free software; you can redistribute it and/or modify it
   7 * under the terms of the GNU General Public License version 2 as published by
   8 * the Free Software Foundation.
   9 *
  10 * This program is distributed in the hope that it will be useful, but WITHOUT
  11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  13 * more details.
  14 *
  15 * You should have received a copy of the GNU General Public License along with
  16 * this program; if not, write to the Free Software Foundation, Inc., 51
  17 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
  18 *
  19 * Authors: Artem Bityutskiy (���������������� ����������)
  20 *          Adrian Hunter
  21 */
  22
  23/*
  24 * This file implements UBIFS journal.
  25 *
  26 * The journal consists of 2 parts - the log and bud LEBs. The log has fixed
  27 * length and position, while a bud logical eraseblock is any LEB in the main
  28 * area. Buds contain file system data - data nodes, inode nodes, etc. The log
  29 * contains only references to buds and some other stuff like commit
  30 * start node. The idea is that when we commit the journal, we do
  31 * not copy the data, the buds just become indexed. Since after the commit the
  32 * nodes in bud eraseblocks become leaf nodes of the file system index tree, we
  33 * use term "bud". Analogy is obvious, bud eraseblocks contain nodes which will
  34 * become leafs in the future.
  35 *
  36 * The journal is multi-headed because we want to write data to the journal as
  37 * optimally as possible. It is nice to have nodes belonging to the same inode
  38 * in one LEB, so we may write data owned by different inodes to different
  39 * journal heads, although at present only one data head is used.
  40 *
  41 * For recovery reasons, the base head contains all inode nodes, all directory
  42 * entry nodes and all truncate nodes. This means that the other heads contain
  43 * only data nodes.
  44 *
  45 * Bud LEBs may be half-indexed. For example, if the bud was not full at the
  46 * time of commit, the bud is retained to continue to be used in the journal,
  47 * even though the "front" of the LEB is now indexed. In that case, the log
  48 * reference contains the offset where the bud starts for the purposes of the
  49 * journal.
  50 *
  51 * The journal size has to be limited, because the larger is the journal, the
  52 * longer it takes to mount UBIFS (scanning the journal) and the more memory it
  53 * takes (indexing in the TNC).
  54 *
  55 * All the journal write operations like 'ubifs_jnl_update()' here, which write
  56 * multiple UBIFS nodes to the journal at one go, are atomic with respect to
  57 * unclean reboots. Should the unclean reboot happen, the recovery code drops
  58 * all the nodes.
  59 */
  60
  61#include "ubifs.h"
  62
  63/**
  64 * zero_ino_node_unused - zero out unused fields of an on-flash inode node.
  65 * @ino: the inode to zero out
  66 */
  67static inline void zero_ino_node_unused(struct ubifs_ino_node *ino)
  68{
  69        memset(ino->padding1, 0, 4);
  70        memset(ino->padding2, 0, 26);
  71}
  72
  73/**
  74 * zero_dent_node_unused - zero out unused fields of an on-flash directory
  75 *                         entry node.
  76 * @dent: the directory entry to zero out
  77 */
  78static inline void zero_dent_node_unused(struct ubifs_dent_node *dent)
  79{
  80        dent->padding1 = 0;
  81        memset(dent->padding2, 0, 4);
  82}
  83
  84/**
  85 * zero_data_node_unused - zero out unused fields of an on-flash data node.
  86 * @data: the data node to zero out
  87 */
  88static inline void zero_data_node_unused(struct ubifs_data_node *data)
  89{
  90        memset(data->padding, 0, 2);
  91}
  92
  93/**
  94 * zero_trun_node_unused - zero out unused fields of an on-flash truncation
  95 *                         node.
  96 * @trun: the truncation node to zero out
  97 */
  98static inline void zero_trun_node_unused(struct ubifs_trun_node *trun)
  99{
 100        memset(trun->padding, 0, 12);
 101}
 102
 103/**
 104 * reserve_space - reserve space in the journal.
 105 * @c: UBIFS file-system description object
 106 * @jhead: journal head number
 107 * @len: node length
 108 *
 109 * This function reserves space in journal head @head. If the reservation
 110 * succeeded, the journal head stays locked and later has to be unlocked using
 111 * 'release_head()'. 'write_node()' and 'write_head()' functions also unlock
 112 * it. Returns zero in case of success, %-EAGAIN if commit has to be done, and
 113 * other negative error codes in case of other failures.
 114 */
 115static int reserve_space(struct ubifs_info *c, int jhead, int len)
 116{
 117        int err = 0, err1, retries = 0, avail, lnum, offs, free, squeeze;
 118        struct ubifs_wbuf *wbuf = &c->jheads[jhead].wbuf;
 119
 120        /*
 121         * Typically, the base head has smaller nodes written to it, so it is
 122         * better to try to allocate space at the ends of eraseblocks. This is
 123         * what the squeeze parameter does.
 124         */
 125        squeeze = (jhead == BASEHD);
 126again:
 127        mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead);
 128
 129        if (c->ro_media) {
 130                err = -EROFS;
 131                goto out_unlock;
 132        }
 133
 134        avail = c->leb_size - wbuf->offs - wbuf->used;
 135        if (wbuf->lnum != -1 && avail >= len)
 136                return 0;
 137
 138        /*
 139         * Write buffer wasn't seek'ed or there is no enough space - look for an
 140         * LEB with some empty space.
 141         */
 142        lnum = ubifs_find_free_space(c, len, &free, squeeze);
 143        if (lnum >= 0) {
 144                /* Found an LEB, add it to the journal head */
 145                offs = c->leb_size - free;
 146                err = ubifs_add_bud_to_log(c, jhead, lnum, offs);
 147                if (err)
 148                        goto out_return;
 149                /* A new bud was successfully allocated and added to the log */
 150                goto out;
 151        }
 152
 153        err = lnum;
 154        if (err != -ENOSPC)
 155                goto out_unlock;
 156
 157        /*
 158         * No free space, we have to run garbage collector to make
 159         * some. But the write-buffer mutex has to be unlocked because
 160         * GC also takes it.
 161         */
 162        dbg_jnl("no free space  jhead %d, run GC", jhead);
 163        mutex_unlock(&wbuf->io_mutex);
 164
 165        lnum = ubifs_garbage_collect(c, 0);
 166        if (lnum < 0) {
 167                err = lnum;
 168                if (err != -ENOSPC)
 169                        return err;
 170
 171                /*
 172                 * GC could not make a free LEB. But someone else may
 173                 * have allocated new bud for this journal head,
 174                 * because we dropped @wbuf->io_mutex, so try once
 175                 * again.
 176                 */
 177                dbg_jnl("GC couldn't make a free LEB for jhead %d", jhead);
 178                if (retries++ < 2) {
 179                        dbg_jnl("retry (%d)", retries);
 180                        goto again;
 181                }
 182
 183                dbg_jnl("return -ENOSPC");
 184                return err;
 185        }
 186
 187        mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead);
 188        dbg_jnl("got LEB %d for jhead %d", lnum, jhead);
 189        avail = c->leb_size - wbuf->offs - wbuf->used;
 190
 191        if (wbuf->lnum != -1 && avail >= len) {
 192                /*
 193                 * Someone else has switched the journal head and we have
 194                 * enough space now. This happens when more then one process is
 195                 * trying to write to the same journal head at the same time.
 196                 */
 197                dbg_jnl("return LEB %d back, already have LEB %d:%d",
 198                        lnum, wbuf->lnum, wbuf->offs + wbuf->used);
 199                err = ubifs_return_leb(c, lnum);
 200                if (err)
 201                        goto out_unlock;
 202                return 0;
 203        }
 204
 205        err = ubifs_add_bud_to_log(c, jhead, lnum, 0);
 206        if (err)
 207                goto out_return;
 208        offs = 0;
 209
 210out:
 211        err = ubifs_wbuf_seek_nolock(wbuf, lnum, offs, UBI_SHORTTERM);
 212        if (err)
 213                goto out_unlock;
 214
 215        return 0;
 216
 217out_unlock:
 218        mutex_unlock(&wbuf->io_mutex);
 219        return err;
 220
 221out_return:
 222        /* An error occurred and the LEB has to be returned to lprops */
 223        ubifs_assert(err < 0);
 224        err1 = ubifs_return_leb(c, lnum);
 225        if (err1 && err == -EAGAIN)
 226                /*
 227                 * Return original error code only if it is not %-EAGAIN,
 228                 * which is not really an error. Otherwise, return the error
 229                 * code of 'ubifs_return_leb()'.
 230                 */
 231                err = err1;
 232        mutex_unlock(&wbuf->io_mutex);
 233        return err;
 234}
 235
 236/**
 237 * write_node - write node to a journal head.
 238 * @c: UBIFS file-system description object
 239 * @jhead: journal head
 240 * @node: node to write
 241 * @len: node length
 242 * @lnum: LEB number written is returned here
 243 * @offs: offset written is returned here
 244 *
 245 * This function writes a node to reserved space of journal head @jhead.
 246 * Returns zero in case of success and a negative error code in case of
 247 * failure.
 248 */
 249static int write_node(struct ubifs_info *c, int jhead, void *node, int len,
 250                      int *lnum, int *offs)
 251{
 252        struct ubifs_wbuf *wbuf = &c->jheads[jhead].wbuf;
 253
 254        ubifs_assert(jhead != GCHD);
 255
 256        *lnum = c->jheads[jhead].wbuf.lnum;
 257        *offs = c->jheads[jhead].wbuf.offs + c->jheads[jhead].wbuf.used;
 258
 259        dbg_jnl("jhead %d, LEB %d:%d, len %d", jhead, *lnum, *offs, len);
 260        ubifs_prepare_node(c, node, len, 0);
 261
 262        return ubifs_wbuf_write_nolock(wbuf, node, len);
 263}
 264
 265/**
 266 * write_head - write data to a journal head.
 267 * @c: UBIFS file-system description object
 268 * @jhead: journal head
 269 * @buf: buffer to write
 270 * @len: length to write
 271 * @lnum: LEB number written is returned here
 272 * @offs: offset written is returned here
 273 * @sync: non-zero if the write-buffer has to by synchronized
 274 *
 275 * This function is the same as 'write_node()' but it does not assume the
 276 * buffer it is writing is a node, so it does not prepare it (which means
 277 * initializing common header and calculating CRC).
 278 */
 279static int write_head(struct ubifs_info *c, int jhead, void *buf, int len,
 280                      int *lnum, int *offs, int sync)
 281{
 282        int err;
 283        struct ubifs_wbuf *wbuf = &c->jheads[jhead].wbuf;
 284
 285        ubifs_assert(jhead != GCHD);
 286
 287        *lnum = c->jheads[jhead].wbuf.lnum;
 288        *offs = c->jheads[jhead].wbuf.offs + c->jheads[jhead].wbuf.used;
 289        dbg_jnl("jhead %d, LEB %d:%d, len %d", jhead, *lnum, *offs, len);
 290
 291        err = ubifs_wbuf_write_nolock(wbuf, buf, len);
 292        if (err)
 293                return err;
 294        if (sync)
 295                err = ubifs_wbuf_sync_nolock(wbuf);
 296        return err;
 297}
 298
 299/**
 300 * make_reservation - reserve journal space.
 301 * @c: UBIFS file-system description object
 302 * @jhead: journal head
 303 * @len: how many bytes to reserve
 304 *
 305 * This function makes space reservation in journal head @jhead. The function
 306 * takes the commit lock and locks the journal head, and the caller has to
 307 * unlock the head and finish the reservation with 'finish_reservation()'.
 308 * Returns zero in case of success and a negative error code in case of
 309 * failure.
 310 *
 311 * Note, the journal head may be unlocked as soon as the data is written, while
 312 * the commit lock has to be released after the data has been added to the
 313 * TNC.
 314 */
 315static int make_reservation(struct ubifs_info *c, int jhead, int len)
 316{
 317        int err, cmt_retries = 0, nospc_retries = 0;
 318
 319again:
 320        down_read(&c->commit_sem);
 321        err = reserve_space(c, jhead, len);
 322        if (!err)
 323                return 0;
 324        up_read(&c->commit_sem);
 325
 326        if (err == -ENOSPC) {
 327                /*
 328                 * GC could not make any progress. We should try to commit
 329                 * once because it could make some dirty space and GC would
 330                 * make progress, so make the error -EAGAIN so that the below
 331                 * will commit and re-try.
 332                 */
 333                if (nospc_retries++ < 2) {
 334                        dbg_jnl("no space, retry");
 335                        err = -EAGAIN;
 336                }
 337
 338                /*
 339                 * This means that the budgeting is incorrect. We always have
 340                 * to be able to write to the media, because all operations are
 341                 * budgeted. Deletions are not budgeted, though, but we reserve
 342                 * an extra LEB for them.
 343                 */
 344        }
 345
 346        if (err != -EAGAIN)
 347                goto out;
 348
 349        /*
 350         * -EAGAIN means that the journal is full or too large, or the above
 351         * code wants to do one commit. Do this and re-try.
 352         */
 353        if (cmt_retries > 128) {
 354                /*
 355                 * This should not happen unless the journal size limitations
 356                 * are too tough.
 357                 */
 358                ubifs_err("stuck in space allocation");
 359                err = -ENOSPC;
 360                goto out;
 361        } else if (cmt_retries > 32)
 362                ubifs_warn("too many space allocation re-tries (%d)",
 363                           cmt_retries);
 364
 365        dbg_jnl("-EAGAIN, commit and retry (retried %d times)",
 366                cmt_retries);
 367        cmt_retries += 1;
 368
 369        err = ubifs_run_commit(c);
 370        if (err)
 371                return err;
 372        goto again;
 373
 374out:
 375        ubifs_err("cannot reserve %d bytes in jhead %d, error %d",
 376                  len, jhead, err);
 377        if (err == -ENOSPC) {
 378                /* This are some budgeting problems, print useful information */
 379                down_write(&c->commit_sem);
 380                spin_lock(&c->space_lock);
 381                dbg_dump_stack();
 382                dbg_dump_budg(c);
 383                spin_unlock(&c->space_lock);
 384                dbg_dump_lprops(c);
 385                cmt_retries = dbg_check_lprops(c);
 386                up_write(&c->commit_sem);
 387        }
 388        return err;
 389}
 390
 391/**
 392 * release_head - release a journal head.
 393 * @c: UBIFS file-system description object
 394 * @jhead: journal head
 395 *
 396 * This function releases journal head @jhead which was locked by
 397 * the 'make_reservation()' function. It has to be called after each successful
 398 * 'make_reservation()' invocation.
 399 */
 400static inline void release_head(struct ubifs_info *c, int jhead)
 401{
 402        mutex_unlock(&c->jheads[jhead].wbuf.io_mutex);
 403}
 404
 405/**
 406 * finish_reservation - finish a reservation.
 407 * @c: UBIFS file-system description object
 408 *
 409 * This function finishes journal space reservation. It must be called after
 410 * 'make_reservation()'.
 411 */
 412static void finish_reservation(struct ubifs_info *c)
 413{
 414        up_read(&c->commit_sem);
 415}
 416
 417/**
 418 * get_dent_type - translate VFS inode mode to UBIFS directory entry type.
 419 * @mode: inode mode
 420 */
 421static int get_dent_type(int mode)
 422{
 423        switch (mode & S_IFMT) {
 424        case S_IFREG:
 425                return UBIFS_ITYPE_REG;
 426        case S_IFDIR:
 427                return UBIFS_ITYPE_DIR;
 428        case S_IFLNK:
 429                return UBIFS_ITYPE_LNK;
 430        case S_IFBLK:
 431                return UBIFS_ITYPE_BLK;
 432        case S_IFCHR:
 433                return UBIFS_ITYPE_CHR;
 434        case S_IFIFO:
 435                return UBIFS_ITYPE_FIFO;
 436        case S_IFSOCK:
 437                return UBIFS_ITYPE_SOCK;
 438        default:
 439                BUG();
 440        }
 441        return 0;
 442}
 443
 444/**
 445 * pack_inode - pack an inode node.
 446 * @c: UBIFS file-system description object
 447 * @ino: buffer in which to pack inode node
 448 * @inode: inode to pack
 449 * @last: indicates the last node of the group
 450 */
 451static void pack_inode(struct ubifs_info *c, struct ubifs_ino_node *ino,
 452                       const struct inode *inode, int last)
 453{
 454        int data_len = 0, last_reference = !inode->i_nlink;
 455        struct ubifs_inode *ui = ubifs_inode(inode);
 456
 457        ino->ch.node_type = UBIFS_INO_NODE;
 458        ino_key_init_flash(c, &ino->key, inode->i_ino);
 459        ino->creat_sqnum = cpu_to_le64(ui->creat_sqnum);
 460        ino->atime_sec  = cpu_to_le64(inode->i_atime.tv_sec);
 461        ino->atime_nsec = cpu_to_le32(inode->i_atime.tv_nsec);
 462        ino->ctime_sec  = cpu_to_le64(inode->i_ctime.tv_sec);
 463        ino->ctime_nsec = cpu_to_le32(inode->i_ctime.tv_nsec);
 464        ino->mtime_sec  = cpu_to_le64(inode->i_mtime.tv_sec);
 465        ino->mtime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec);
 466        ino->uid   = cpu_to_le32(inode->i_uid);
 467        ino->gid   = cpu_to_le32(inode->i_gid);
 468        ino->mode  = cpu_to_le32(inode->i_mode);
 469        ino->flags = cpu_to_le32(ui->flags);
 470        ino->size  = cpu_to_le64(ui->ui_size);
 471        ino->nlink = cpu_to_le32(inode->i_nlink);
 472        ino->compr_type  = cpu_to_le16(ui->compr_type);
 473        ino->data_len    = cpu_to_le32(ui->data_len);
 474        ino->xattr_cnt   = cpu_to_le32(ui->xattr_cnt);
 475        ino->xattr_size  = cpu_to_le32(ui->xattr_size);
 476        ino->xattr_names = cpu_to_le32(ui->xattr_names);
 477        zero_ino_node_unused(ino);
 478
 479        /*
 480         * Drop the attached data if this is a deletion inode, the data is not
 481         * needed anymore.
 482         */
 483        if (!last_reference) {
 484                memcpy(ino->data, ui->data, ui->data_len);
 485                data_len = ui->data_len;
 486        }
 487
 488        ubifs_prep_grp_node(c, ino, UBIFS_INO_NODE_SZ + data_len, last);
 489}
 490
 491/**
 492 * mark_inode_clean - mark UBIFS inode as clean.
 493 * @c: UBIFS file-system description object
 494 * @ui: UBIFS inode to mark as clean
 495 *
 496 * This helper function marks UBIFS inode @ui as clean by cleaning the
 497 * @ui->dirty flag and releasing its budget. Note, VFS may still treat the
 498 * inode as dirty and try to write it back, but 'ubifs_write_inode()' would
 499 * just do nothing.
 500 */
 501static void mark_inode_clean(struct ubifs_info *c, struct ubifs_inode *ui)
 502{
 503        if (ui->dirty)
 504                ubifs_release_dirty_inode_budget(c, ui);
 505        ui->dirty = 0;
 506}
 507
 508/**
 509 * ubifs_jnl_update - update inode.
 510 * @c: UBIFS file-system description object
 511 * @dir: parent inode or host inode in case of extended attributes
 512 * @nm: directory entry name
 513 * @inode: inode to update
 514 * @deletion: indicates a directory entry deletion i.e unlink or rmdir
 515 * @xent: non-zero if the directory entry is an extended attribute entry
 516 *
 517 * This function updates an inode by writing a directory entry (or extended
 518 * attribute entry), the inode itself, and the parent directory inode (or the
 519 * host inode) to the journal.
 520 *
 521 * The function writes the host inode @dir last, which is important in case of
 522 * extended attributes. Indeed, then we guarantee that if the host inode gets
 523 * synchronized (with 'fsync()'), and the write-buffer it sits in gets flushed,
 524 * the extended attribute inode gets flushed too. And this is exactly what the
 525 * user expects - synchronizing the host inode synchronizes its extended
 526 * attributes. Similarly, this guarantees that if @dir is synchronized, its
 527 * directory entry corresponding to @nm gets synchronized too.
 528 *
 529 * If the inode (@inode) or the parent directory (@dir) are synchronous, this
 530 * function synchronizes the write-buffer.
 531 *
 532 * This function marks the @dir and @inode inodes as clean and returns zero on
 533 * success. In case of failure, a negative error code is returned.
 534 */
 535int ubifs_jnl_update(struct ubifs_info *c, const struct inode *dir,
 536                     const struct qstr *nm, const struct inode *inode,
 537                     int deletion, int xent)
 538{
 539        int err, dlen, ilen, len, lnum, ino_offs, dent_offs;
 540        int aligned_dlen, aligned_ilen, sync = IS_DIRSYNC(dir);
 541        int last_reference = !!(deletion && inode->i_nlink == 0);
 542        struct ubifs_inode *ui = ubifs_inode(inode);
 543        struct ubifs_inode *dir_ui = ubifs_inode(dir);
 544        struct ubifs_dent_node *dent;
 545        struct ubifs_ino_node *ino;
 546        union ubifs_key dent_key, ino_key;
 547
 548        dbg_jnl("ino %lu, dent '%.*s', data len %d in dir ino %lu",
 549                inode->i_ino, nm->len, nm->name, ui->data_len, dir->i_ino);
 550        ubifs_assert(dir_ui->data_len == 0);
 551        ubifs_assert(mutex_is_locked(&dir_ui->ui_mutex));
 552
 553        dlen = UBIFS_DENT_NODE_SZ + nm->len + 1;
 554        ilen = UBIFS_INO_NODE_SZ;
 555
 556        /*
 557         * If the last reference to the inode is being deleted, then there is
 558         * no need to attach and write inode data, it is being deleted anyway.
 559         * And if the inode is being deleted, no need to synchronize
 560         * write-buffer even if the inode is synchronous.
 561         */
 562        if (!last_reference) {
 563                ilen += ui->data_len;
 564                sync |= IS_SYNC(inode);
 565        }
 566
 567        aligned_dlen = ALIGN(dlen, 8);
 568        aligned_ilen = ALIGN(ilen, 8);
 569        len = aligned_dlen + aligned_ilen + UBIFS_INO_NODE_SZ;
 570        dent = kmalloc(len, GFP_NOFS);
 571        if (!dent)
 572                return -ENOMEM;
 573
 574        /* Make reservation before allocating sequence numbers */
 575        err = make_reservation(c, BASEHD, len);
 576        if (err)
 577                goto out_free;
 578
 579        if (!xent) {
 580                dent->ch.node_type = UBIFS_DENT_NODE;
 581                dent_key_init(c, &dent_key, dir->i_ino, nm);
 582        } else {
 583                dent->ch.node_type = UBIFS_XENT_NODE;
 584                xent_key_init(c, &dent_key, dir->i_ino, nm);
 585        }
 586
 587        key_write(c, &dent_key, dent->key);
 588        dent->inum = deletion ? 0 : cpu_to_le64(inode->i_ino);
 589        dent->type = get_dent_type(inode->i_mode);
 590        dent->nlen = cpu_to_le16(nm->len);
 591        memcpy(dent->name, nm->name, nm->len);
 592        dent->name[nm->len] = '\0';
 593        zero_dent_node_unused(dent);
 594        ubifs_prep_grp_node(c, dent, dlen, 0);
 595
 596        ino = (void *)dent + aligned_dlen;
 597        pack_inode(c, ino, inode, 0);
 598        ino = (void *)ino + aligned_ilen;
 599        pack_inode(c, ino, dir, 1);
 600
 601        if (last_reference) {
 602                err = ubifs_add_orphan(c, inode->i_ino);
 603                if (err) {
 604                        release_head(c, BASEHD);
 605                        goto out_finish;
 606                }
 607                ui->del_cmtno = c->cmt_no;
 608        }
 609
 610        err = write_head(c, BASEHD, dent, len, &lnum, &dent_offs, sync);
 611        if (err)
 612                goto out_release;
 613        if (!sync) {
 614                struct ubifs_wbuf *wbuf = &c->jheads[BASEHD].wbuf;
 615
 616                ubifs_wbuf_add_ino_nolock(wbuf, inode->i_ino);
 617                ubifs_wbuf_add_ino_nolock(wbuf, dir->i_ino);
 618        }
 619        release_head(c, BASEHD);
 620        kfree(dent);
 621
 622        if (deletion) {
 623                err = ubifs_tnc_remove_nm(c, &dent_key, nm);
 624                if (err)
 625                        goto out_ro;
 626                err = ubifs_add_dirt(c, lnum, dlen);
 627        } else
 628                err = ubifs_tnc_add_nm(c, &dent_key, lnum, dent_offs, dlen, nm);
 629        if (err)
 630                goto out_ro;
 631
 632        /*
 633         * Note, we do not remove the inode from TNC even if the last reference
 634         * to it has just been deleted, because the inode may still be opened.
 635         * Instead, the inode has been added to orphan lists and the orphan
 636         * subsystem will take further care about it.
 637         */
 638        ino_key_init(c, &ino_key, inode->i_ino);
 639        ino_offs = dent_offs + aligned_dlen;
 640        err = ubifs_tnc_add(c, &ino_key, lnum, ino_offs, ilen);
 641        if (err)
 642                goto out_ro;
 643
 644        ino_key_init(c, &ino_key, dir->i_ino);
 645        ino_offs += aligned_ilen;
 646        err = ubifs_tnc_add(c, &ino_key, lnum, ino_offs, UBIFS_INO_NODE_SZ);
 647        if (err)
 648                goto out_ro;
 649
 650        finish_reservation(c);
 651        spin_lock(&ui->ui_lock);
 652        ui->synced_i_size = ui->ui_size;
 653        spin_unlock(&ui->ui_lock);
 654        mark_inode_clean(c, ui);
 655        mark_inode_clean(c, dir_ui);
 656        return 0;
 657
 658out_finish:
 659        finish_reservation(c);
 660out_free:
 661        kfree(dent);
 662        return err;
 663
 664out_release:
 665        release_head(c, BASEHD);
 666out_ro:
 667        ubifs_ro_mode(c, err);
 668        if (last_reference)
 669                ubifs_delete_orphan(c, inode->i_ino);
 670        finish_reservation(c);
 671        return err;
 672}
 673
 674/**
 675 * ubifs_jnl_write_data - write a data node to the journal.
 676 * @c: UBIFS file-system description object
 677 * @inode: inode the data node belongs to
 678 * @key: node key
 679 * @buf: buffer to write
 680 * @len: data length (must not exceed %UBIFS_BLOCK_SIZE)
 681 *
 682 * This function writes a data node to the journal. Returns %0 if the data node
 683 * was successfully written, and a negative error code in case of failure.
 684 */
 685int ubifs_jnl_write_data(struct ubifs_info *c, const struct inode *inode,
 686                         const union ubifs_key *key, const void *buf, int len)
 687{
 688        struct ubifs_data_node *data;
 689        int err, lnum, offs, compr_type, out_len;
 690        int dlen = UBIFS_DATA_NODE_SZ + UBIFS_BLOCK_SIZE * WORST_COMPR_FACTOR;
 691        struct ubifs_inode *ui = ubifs_inode(inode);
 692
 693        dbg_jnl("ino %lu, blk %u, len %d, key %s",
 694                (unsigned long)key_inum(c, key), key_block(c, key), len,
 695                DBGKEY(key));
 696        ubifs_assert(len <= UBIFS_BLOCK_SIZE);
 697
 698        data = kmalloc(dlen, GFP_NOFS);
 699        if (!data)
 700                return -ENOMEM;
 701
 702        data->ch.node_type = UBIFS_DATA_NODE;
 703        key_write(c, key, &data->key);
 704        data->size = cpu_to_le32(len);
 705        zero_data_node_unused(data);
 706
 707        if (!(ui->flags && UBIFS_COMPR_FL))
 708                /* Compression is disabled for this inode */
 709                compr_type = UBIFS_COMPR_NONE;
 710        else
 711                compr_type = ui->compr_type;
 712
 713        out_len = dlen - UBIFS_DATA_NODE_SZ;
 714        ubifs_compress(buf, len, &data->data, &out_len, &compr_type);
 715        ubifs_assert(out_len <= UBIFS_BLOCK_SIZE);
 716
 717        dlen = UBIFS_DATA_NODE_SZ + out_len;
 718        data->compr_type = cpu_to_le16(compr_type);
 719
 720        /* Make reservation before allocating sequence numbers */
 721        err = make_reservation(c, DATAHD, dlen);
 722        if (err)
 723                goto out_free;
 724
 725        err = write_node(c, DATAHD, data, dlen, &lnum, &offs);
 726        if (err)
 727                goto out_release;
 728        ubifs_wbuf_add_ino_nolock(&c->jheads[DATAHD].wbuf, key_inum(c, key));
 729        release_head(c, DATAHD);
 730
 731        err = ubifs_tnc_add(c, key, lnum, offs, dlen);
 732        if (err)
 733                goto out_ro;
 734
 735        finish_reservation(c);
 736        kfree(data);
 737        return 0;
 738
 739out_release:
 740        release_head(c, DATAHD);
 741out_ro:
 742        ubifs_ro_mode(c, err);
 743        finish_reservation(c);
 744out_free:
 745        kfree(data);
 746        return err;
 747}
 748
 749/**
 750 * ubifs_jnl_write_inode - flush inode to the journal.
 751 * @c: UBIFS file-system description object
 752 * @inode: inode to flush
 753 *
 754 * This function writes inode @inode to the journal. If the inode is
 755 * synchronous, it also synchronizes the write-buffer. Returns zero in case of
 756 * success and a negative error code in case of failure.
 757 */
 758int ubifs_jnl_write_inode(struct ubifs_info *c, const struct inode *inode)
 759{
 760        int err, lnum, offs;
 761        struct ubifs_ino_node *ino;
 762        struct ubifs_inode *ui = ubifs_inode(inode);
 763        int sync = 0, len = UBIFS_INO_NODE_SZ, last_reference = !inode->i_nlink;
 764
 765        dbg_jnl("ino %lu, nlink %u", inode->i_ino, inode->i_nlink);
 766
 767        /*
 768         * If the inode is being deleted, do not write the attached data. No
 769         * need to synchronize the write-buffer either.
 770         */
 771        if (!last_reference) {
 772                len += ui->data_len;
 773                sync = IS_SYNC(inode);
 774        }
 775        ino = kmalloc(len, GFP_NOFS);
 776        if (!ino)
 777                return -ENOMEM;
 778
 779        /* Make reservation before allocating sequence numbers */
 780        err = make_reservation(c, BASEHD, len);
 781        if (err)
 782                goto out_free;
 783
 784        pack_inode(c, ino, inode, 1);
 785        err = write_head(c, BASEHD, ino, len, &lnum, &offs, sync);
 786        if (err)
 787                goto out_release;
 788        if (!sync)
 789                ubifs_wbuf_add_ino_nolock(&c->jheads[BASEHD].wbuf,
 790                                          inode->i_ino);
 791        release_head(c, BASEHD);
 792
 793        if (last_reference) {
 794                err = ubifs_tnc_remove_ino(c, inode->i_ino);
 795                if (err)
 796                        goto out_ro;
 797                ubifs_delete_orphan(c, inode->i_ino);
 798                err = ubifs_add_dirt(c, lnum, len);
 799        } else {
 800                union ubifs_key key;
 801
 802                ino_key_init(c, &key, inode->i_ino);
 803                err = ubifs_tnc_add(c, &key, lnum, offs, len);
 804        }
 805        if (err)
 806                goto out_ro;
 807
 808        finish_reservation(c);
 809        spin_lock(&ui->ui_lock);
 810        ui->synced_i_size = ui->ui_size;
 811        spin_unlock(&ui->ui_lock);
 812        kfree(ino);
 813        return 0;
 814
 815out_release:
 816        release_head(c, BASEHD);
 817out_ro:
 818        ubifs_ro_mode(c, err);
 819        finish_reservation(c);
 820out_free:
 821        kfree(ino);
 822        return err;
 823}
 824
 825/**
 826 * ubifs_jnl_delete_inode - delete an inode.
 827 * @c: UBIFS file-system description object
 828 * @inode: inode to delete
 829 *
 830 * This function deletes inode @inode which includes removing it from orphans,
 831 * deleting it from TNC and, in some cases, writing a deletion inode to the
 832 * journal.
 833 *
 834 * When regular file inodes are unlinked or a directory inode is removed, the
 835 * 'ubifs_jnl_update()' function writes a corresponding deletion inode and
 836 * direntry to the media, and adds the inode to orphans. After this, when the
 837 * last reference to this inode has been dropped, this function is called. In
 838 * general, it has to write one more deletion inode to the media, because if
 839 * a commit happened between 'ubifs_jnl_update()' and
 840 * 'ubifs_jnl_delete_inode()', the deletion inode is not in the journal
 841 * anymore, and in fact it might not be on the flash anymore, because it might
 842 * have been garbage-collected already. And for optimization reasons UBIFS does
 843 * not read the orphan area if it has been unmounted cleanly, so it would have
 844 * no indication in the journal that there is a deleted inode which has to be
 845 * removed from TNC.
 846 *
 847 * However, if there was no commit between 'ubifs_jnl_update()' and
 848 * 'ubifs_jnl_delete_inode()', then there is no need to write the deletion
 849 * inode to the media for the second time. And this is quite a typical case.
 850 *
 851 * This function returns zero in case of success and a negative error code in
 852 * case of failure.
 853 */
 854int ubifs_jnl_delete_inode(struct ubifs_info *c, const struct inode *inode)
 855{
 856        int err;
 857        struct ubifs_inode *ui = ubifs_inode(inode);
 858
 859        ubifs_assert(inode->i_nlink == 0);
 860
 861        if (ui->del_cmtno != c->cmt_no)
 862                /* A commit happened for sure */
 863                return ubifs_jnl_write_inode(c, inode);
 864
 865        down_read(&c->commit_sem);
 866        /*
 867         * Check commit number again, because the first test has been done
 868         * without @c->commit_sem, so a commit might have happened.
 869         */
 870        if (ui->del_cmtno != c->cmt_no) {
 871                up_read(&c->commit_sem);
 872                return ubifs_jnl_write_inode(c, inode);
 873        }
 874
 875        err = ubifs_tnc_remove_ino(c, inode->i_ino);
 876        if (err)
 877                ubifs_ro_mode(c, err);
 878        else
 879                ubifs_delete_orphan(c, inode->i_ino);
 880        up_read(&c->commit_sem);
 881        return err;
 882}
 883
 884/**
 885 * ubifs_jnl_rename - rename a directory entry.
 886 * @c: UBIFS file-system description object
 887 * @old_dir: parent inode of directory entry to rename
 888 * @old_dentry: directory entry to rename
 889 * @new_dir: parent inode of directory entry to rename
 890 * @new_dentry: new directory entry (or directory entry to replace)
 891 * @sync: non-zero if the write-buffer has to be synchronized
 892 *
 893 * This function implements the re-name operation which may involve writing up
 894 * to 3 inodes and 2 directory entries. It marks the written inodes as clean
 895 * and returns zero on success. In case of failure, a negative error code is
 896 * returned.
 897 */
 898int ubifs_jnl_rename(struct ubifs_info *c, const struct inode *old_dir,
 899                     const struct dentry *old_dentry,
 900                     const struct inode *new_dir,
 901                     const struct dentry *new_dentry, int sync)
 902{
 903        void *p;
 904        union ubifs_key key;
 905        struct ubifs_dent_node *dent, *dent2;
 906        int err, dlen1, dlen2, ilen, lnum, offs, len;
 907        const struct inode *old_inode = old_dentry->d_inode;
 908        const struct inode *new_inode = new_dentry->d_inode;
 909        int aligned_dlen1, aligned_dlen2, plen = UBIFS_INO_NODE_SZ;
 910        int last_reference = !!(new_inode && new_inode->i_nlink == 0);
 911        int move = (old_dir != new_dir);
 912        struct ubifs_inode *uninitialized_var(new_ui);
 913
 914        dbg_jnl("dent '%.*s' in dir ino %lu to dent '%.*s' in dir ino %lu",
 915                old_dentry->d_name.len, old_dentry->d_name.name,
 916                old_dir->i_ino, new_dentry->d_name.len,
 917                new_dentry->d_name.name, new_dir->i_ino);
 918        ubifs_assert(ubifs_inode(old_dir)->data_len == 0);
 919        ubifs_assert(ubifs_inode(new_dir)->data_len == 0);
 920        ubifs_assert(mutex_is_locked(&ubifs_inode(old_dir)->ui_mutex));
 921        ubifs_assert(mutex_is_locked(&ubifs_inode(new_dir)->ui_mutex));
 922
 923        dlen1 = UBIFS_DENT_NODE_SZ + new_dentry->d_name.len + 1;
 924        dlen2 = UBIFS_DENT_NODE_SZ + old_dentry->d_name.len + 1;
 925        if (new_inode) {
 926                new_ui = ubifs_inode(new_inode);
 927                ubifs_assert(mutex_is_locked(&new_ui->ui_mutex));
 928                ilen = UBIFS_INO_NODE_SZ;
 929                if (!last_reference)
 930                        ilen += new_ui->data_len;
 931        } else
 932                ilen = 0;
 933
 934        aligned_dlen1 = ALIGN(dlen1, 8);
 935        aligned_dlen2 = ALIGN(dlen2, 8);
 936        len = aligned_dlen1 + aligned_dlen2 + ALIGN(ilen, 8) + ALIGN(plen, 8);
 937        if (old_dir != new_dir)
 938                len += plen;
 939        dent = kmalloc(len, GFP_NOFS);
 940        if (!dent)
 941                return -ENOMEM;
 942
 943        /* Make reservation before allocating sequence numbers */
 944        err = make_reservation(c, BASEHD, len);
 945        if (err)
 946                goto out_free;
 947
 948        /* Make new dent */
 949        dent->ch.node_type = UBIFS_DENT_NODE;
 950        dent_key_init_flash(c, &dent->key, new_dir->i_ino, &new_dentry->d_name);
 951        dent->inum = cpu_to_le64(old_inode->i_ino);
 952        dent->type = get_dent_type(old_inode->i_mode);
 953        dent->nlen = cpu_to_le16(new_dentry->d_name.len);
 954        memcpy(dent->name, new_dentry->d_name.name, new_dentry->d_name.len);
 955        dent->name[new_dentry->d_name.len] = '\0';
 956        zero_dent_node_unused(dent);
 957        ubifs_prep_grp_node(c, dent, dlen1, 0);
 958
 959        /* Make deletion dent */
 960        dent2 = (void *)dent + aligned_dlen1;
 961        dent2->ch.node_type = UBIFS_DENT_NODE;
 962        dent_key_init_flash(c, &dent2->key, old_dir->i_ino,
 963                            &old_dentry->d_name);
 964        dent2->inum = 0;
 965        dent2->type = DT_UNKNOWN;
 966        dent2->nlen = cpu_to_le16(old_dentry->d_name.len);
 967        memcpy(dent2->name, old_dentry->d_name.name, old_dentry->d_name.len);
 968        dent2->name[old_dentry->d_name.len] = '\0';
 969        zero_dent_node_unused(dent2);
 970        ubifs_prep_grp_node(c, dent2, dlen2, 0);
 971
 972        p = (void *)dent2 + aligned_dlen2;
 973        if (new_inode) {
 974                pack_inode(c, p, new_inode, 0);
 975                p += ALIGN(ilen, 8);
 976        }
 977
 978        if (!move)
 979                pack_inode(c, p, old_dir, 1);
 980        else {
 981                pack_inode(c, p, old_dir, 0);
 982                p += ALIGN(plen, 8);
 983                pack_inode(c, p, new_dir, 1);
 984        }
 985
 986        if (last_reference) {
 987                err = ubifs_add_orphan(c, new_inode->i_ino);
 988                if (err) {
 989                        release_head(c, BASEHD);
 990                        goto out_finish;
 991                }
 992                new_ui->del_cmtno = c->cmt_no;
 993        }
 994
 995        err = write_head(c, BASEHD, dent, len, &lnum, &offs, sync);
 996        if (err)
 997                goto out_release;
 998        if (!sync) {
 999                struct ubifs_wbuf *wbuf = &c->jheads[BASEHD].wbuf;
1000
1001                ubifs_wbuf_add_ino_nolock(wbuf, new_dir->i_ino);
1002                ubifs_wbuf_add_ino_nolock(wbuf, old_dir->i_ino);
1003                if (new_inode)
1004                        ubifs_wbuf_add_ino_nolock(&c->jheads[BASEHD].wbuf,
1005                                                  new_inode->i_ino);
1006        }
1007        release_head(c, BASEHD);
1008
1009        dent_key_init(c, &key, new_dir->i_ino, &new_dentry->d_name);
1010        err = ubifs_tnc_add_nm(c, &key, lnum, offs, dlen1, &new_dentry->d_name);
1011        if (err)
1012                goto out_ro;
1013
1014        err = ubifs_add_dirt(c, lnum, dlen2);
1015        if (err)
1016                goto out_ro;
1017
1018        dent_key_init(c, &key, old_dir->i_ino, &old_dentry->d_name);
1019        err = ubifs_tnc_remove_nm(c, &key, &old_dentry->d_name);
1020        if (err)
1021                goto out_ro;
1022
1023        offs += aligned_dlen1 + aligned_dlen2;
1024        if (new_inode) {
1025                ino_key_init(c, &key, new_inode->i_ino);
1026                err = ubifs_tnc_add(c, &key, lnum, offs, ilen);
1027                if (err)
1028                        goto out_ro;
1029                offs += ALIGN(ilen, 8);
1030        }
1031
1032        ino_key_init(c, &key, old_dir->i_ino);
1033        err = ubifs_tnc_add(c, &key, lnum, offs, plen);
1034        if (err)
1035                goto out_ro;
1036
1037        if (old_dir != new_dir) {
1038                offs += ALIGN(plen, 8);
1039                ino_key_init(c, &key, new_dir->i_ino);
1040                err = ubifs_tnc_add(c, &key, lnum, offs, plen);
1041                if (err)
1042                        goto out_ro;
1043        }
1044
1045        finish_reservation(c);
1046        if (new_inode) {
1047                mark_inode_clean(c, new_ui);
1048                spin_lock(&new_ui->ui_lock);
1049                new_ui->synced_i_size = new_ui->ui_size;
1050                spin_unlock(&new_ui->ui_lock);
1051        }
1052        mark_inode_clean(c, ubifs_inode(old_dir));
1053        if (move)
1054                mark_inode_clean(c, ubifs_inode(new_dir));
1055        kfree(dent);
1056        return 0;
1057
1058out_release:
1059        release_head(c, BASEHD);
1060out_ro:
1061        ubifs_ro_mode(c, err);
1062        if (last_reference)
1063                ubifs_delete_orphan(c, new_inode->i_ino);
1064out_finish:
1065        finish_reservation(c);
1066out_free:
1067        kfree(dent);
1068        return err;
1069}
1070
1071/**
1072 * recomp_data_node - re-compress a truncated data node.
1073 * @dn: data node to re-compress
1074 * @new_len: new length
1075 *
1076 * This function is used when an inode is truncated and the last data node of
1077 * the inode has to be re-compressed and re-written.
1078 */
1079static int recomp_data_node(struct ubifs_data_node *dn, int *new_len)
1080{
1081        void *buf;
1082        int err, len, compr_type, out_len;
1083
1084        out_len = le32_to_cpu(dn->size);
1085        buf = kmalloc(out_len * WORST_COMPR_FACTOR, GFP_NOFS);
1086        if (!buf)
1087                return -ENOMEM;
1088
1089        len = le32_to_cpu(dn->ch.len) - UBIFS_DATA_NODE_SZ;
1090        compr_type = le16_to_cpu(dn->compr_type);
1091        err = ubifs_decompress(&dn->data, len, buf, &out_len, compr_type);
1092        if (err)
1093                goto out;
1094
1095        ubifs_compress(buf, *new_len, &dn->data, &out_len, &compr_type);
1096        ubifs_assert(out_len <= UBIFS_BLOCK_SIZE);
1097        dn->compr_type = cpu_to_le16(compr_type);
1098        dn->size = cpu_to_le32(*new_len);
1099        *new_len = UBIFS_DATA_NODE_SZ + out_len;
1100out:
1101        kfree(buf);
1102        return err;
1103}
1104
1105/**
1106 * ubifs_jnl_truncate - update the journal for a truncation.
1107 * @c: UBIFS file-system description object
1108 * @inode: inode to truncate
1109 * @old_size: old size
1110 * @new_size: new size
1111 *
1112 * When the size of a file decreases due to truncation, a truncation node is
1113 * written, the journal tree is updated, and the last data block is re-written
1114 * if it has been affected. The inode is also updated in order to synchronize
1115 * the new inode size.
1116 *
1117 * This function marks the inode as clean and returns zero on success. In case
1118 * of failure, a negative error code is returned.
1119 */
1120int ubifs_jnl_truncate(struct ubifs_info *c, const struct inode *inode,
1121                       loff_t old_size, loff_t new_size)
1122{
1123        union ubifs_key key, to_key;
1124        struct ubifs_ino_node *ino;
1125        struct ubifs_trun_node *trun;
1126        struct ubifs_data_node *uninitialized_var(dn);
1127        int err, dlen, len, lnum, offs, bit, sz, sync = IS_SYNC(inode);
1128        struct ubifs_inode *ui = ubifs_inode(inode);
1129        ino_t inum = inode->i_ino;
1130        unsigned int blk;
1131
1132        dbg_jnl("ino %lu, size %lld -> %lld",
1133                (unsigned long)inum, old_size, new_size);
1134        ubifs_assert(!ui->data_len);
1135        ubifs_assert(S_ISREG(inode->i_mode));
1136        ubifs_assert(mutex_is_locked(&ui->ui_mutex));
1137
1138        sz = UBIFS_TRUN_NODE_SZ + UBIFS_INO_NODE_SZ +
1139             UBIFS_MAX_DATA_NODE_SZ * WORST_COMPR_FACTOR;
1140        ino = kmalloc(sz, GFP_NOFS);
1141        if (!ino)
1142                return -ENOMEM;
1143
1144        trun = (void *)ino + UBIFS_INO_NODE_SZ;
1145        trun->ch.node_type = UBIFS_TRUN_NODE;
1146        trun->inum = cpu_to_le32(inum);
1147        trun->old_size = cpu_to_le64(old_size);
1148        trun->new_size = cpu_to_le64(new_size);
1149        zero_trun_node_unused(trun);
1150
1151        dlen = new_size & (UBIFS_BLOCK_SIZE - 1);
1152        if (dlen) {
1153                /* Get last data block so it can be truncated */
1154                dn = (void *)trun + UBIFS_TRUN_NODE_SZ;
1155                blk = new_size >> UBIFS_BLOCK_SHIFT;
1156                data_key_init(c, &key, inum, blk);
1157                dbg_jnl("last block key %s", DBGKEY(&key));
1158                err = ubifs_tnc_lookup(c, &key, dn);
1159                if (err == -ENOENT)
1160                        dlen = 0; /* Not found (so it is a hole) */
1161                else if (err)
1162                        goto out_free;
1163                else {
1164                        if (le32_to_cpu(dn->size) <= dlen)
1165                                dlen = 0; /* Nothing to do */
1166                        else {
1167                                int compr_type = le16_to_cpu(dn->compr_type);
1168
1169                                if (compr_type != UBIFS_COMPR_NONE) {
1170                                        err = recomp_data_node(dn, &dlen);
1171                                        if (err)
1172                                                goto out_free;
1173                                } else {
1174                                        dn->size = cpu_to_le32(dlen);
1175                                        dlen += UBIFS_DATA_NODE_SZ;
1176                                }
1177                                zero_data_node_unused(dn);
1178                        }
1179                }
1180        }
1181
1182        /* Must make reservation before allocating sequence numbers */
1183        len = UBIFS_TRUN_NODE_SZ + UBIFS_INO_NODE_SZ;
1184        if (dlen)
1185                len += dlen;
1186        err = make_reservation(c, BASEHD, len);
1187        if (err)
1188                goto out_free;
1189
1190        pack_inode(c, ino, inode, 0);
1191        ubifs_prep_grp_node(c, trun, UBIFS_TRUN_NODE_SZ, dlen ? 0 : 1);
1192        if (dlen)
1193                ubifs_prep_grp_node(c, dn, dlen, 1);
1194
1195        err = write_head(c, BASEHD, ino, len, &lnum, &offs, sync);
1196        if (err)
1197                goto out_release;
1198        if (!sync)
1199                ubifs_wbuf_add_ino_nolock(&c->jheads[BASEHD].wbuf, inum);
1200        release_head(c, BASEHD);
1201
1202        if (dlen) {
1203                sz = offs + UBIFS_INO_NODE_SZ + UBIFS_TRUN_NODE_SZ;
1204                err = ubifs_tnc_add(c, &key, lnum, sz, dlen);
1205                if (err)
1206                        goto out_ro;
1207        }
1208
1209        ino_key_init(c, &key, inum);
1210        err = ubifs_tnc_add(c, &key, lnum, offs, UBIFS_INO_NODE_SZ);
1211        if (err)
1212                goto out_ro;
1213
1214        err = ubifs_add_dirt(c, lnum, UBIFS_TRUN_NODE_SZ);
1215        if (err)
1216                goto out_ro;
1217
1218        bit = new_size & (UBIFS_BLOCK_SIZE - 1);
1219        blk = (new_size >> UBIFS_BLOCK_SHIFT) + (bit ? 1 : 0);
1220        data_key_init(c, &key, inum, blk);
1221
1222        bit = old_size & (UBIFS_BLOCK_SIZE - 1);
1223        blk = (old_size >> UBIFS_BLOCK_SHIFT) - (bit ? 0: 1);
1224        data_key_init(c, &to_key, inum, blk);
1225
1226        err = ubifs_tnc_remove_range(c, &key, &to_key);
1227        if (err)
1228                goto out_ro;
1229
1230        finish_reservation(c);
1231        spin_lock(&ui->ui_lock);
1232        ui->synced_i_size = ui->ui_size;
1233        spin_unlock(&ui->ui_lock);
1234        mark_inode_clean(c, ui);
1235        kfree(ino);
1236        return 0;
1237
1238out_release:
1239        release_head(c, BASEHD);
1240out_ro:
1241        ubifs_ro_mode(c, err);
1242        finish_reservation(c);
1243out_free:
1244        kfree(ino);
1245        return err;
1246}
1247
1248#ifdef CONFIG_UBIFS_FS_XATTR
1249
1250/**
1251 * ubifs_jnl_delete_xattr - delete an extended attribute.
1252 * @c: UBIFS file-system description object
1253 * @host: host inode
1254 * @inode: extended attribute inode
1255 * @nm: extended attribute entry name
1256 *
1257 * This function delete an extended attribute which is very similar to
1258 * un-linking regular files - it writes a deletion xentry, a deletion inode and
1259 * updates the target inode. Returns zero in case of success and a negative
1260 * error code in case of failure.
1261 */
1262int ubifs_jnl_delete_xattr(struct ubifs_info *c, const struct inode *host,
1263                           const struct inode *inode, const struct qstr *nm)
1264{
1265        int err, xlen, hlen, len, lnum, xent_offs, aligned_xlen;
1266        struct ubifs_dent_node *xent;
1267        struct ubifs_ino_node *ino;
1268        union ubifs_key xent_key, key1, key2;
1269        int sync = IS_DIRSYNC(host);
1270        struct ubifs_inode *host_ui = ubifs_inode(host);
1271
1272        dbg_jnl("host %lu, xattr ino %lu, name '%s', data len %d",
1273                host->i_ino, inode->i_ino, nm->name,
1274                ubifs_inode(inode)->data_len);
1275        ubifs_assert(inode->i_nlink == 0);
1276        ubifs_assert(mutex_is_locked(&host_ui->ui_mutex));
1277
1278        /*
1279         * Since we are deleting the inode, we do not bother to attach any data
1280         * to it and assume its length is %UBIFS_INO_NODE_SZ.
1281         */
1282        xlen = UBIFS_DENT_NODE_SZ + nm->len + 1;
1283        aligned_xlen = ALIGN(xlen, 8);
1284        hlen = host_ui->data_len + UBIFS_INO_NODE_SZ;
1285        len = aligned_xlen + UBIFS_INO_NODE_SZ + ALIGN(hlen, 8);
1286
1287        xent = kmalloc(len, GFP_NOFS);
1288        if (!xent)
1289                return -ENOMEM;
1290
1291        /* Make reservation before allocating sequence numbers */
1292        err = make_reservation(c, BASEHD, len);
1293        if (err) {
1294                kfree(xent);
1295                return err;
1296        }
1297
1298        xent->ch.node_type = UBIFS_XENT_NODE;
1299        xent_key_init(c, &xent_key, host->i_ino, nm);
1300        key_write(c, &xent_key, xent->key);
1301        xent->inum = 0;
1302        xent->type = get_dent_type(inode->i_mode);
1303        xent->nlen = cpu_to_le16(nm->len);
1304        memcpy(xent->name, nm->name, nm->len);
1305        xent->name[nm->len] = '\0';
1306        zero_dent_node_unused(xent);
1307        ubifs_prep_grp_node(c, xent, xlen, 0);
1308
1309        ino = (void *)xent + aligned_xlen;
1310        pack_inode(c, ino, inode, 0);
1311        ino = (void *)ino + UBIFS_INO_NODE_SZ;
1312        pack_inode(c, ino, host, 1);
1313
1314        err = write_head(c, BASEHD, xent, len, &lnum, &xent_offs, sync);
1315        if (!sync && !err)
1316                ubifs_wbuf_add_ino_nolock(&c->jheads[BASEHD].wbuf, host->i_ino);
1317        release_head(c, BASEHD);
1318        kfree(xent);
1319        if (err)
1320                goto out_ro;
1321
1322        /* Remove the extended attribute entry from TNC */
1323        err = ubifs_tnc_remove_nm(c, &xent_key, nm);
1324        if (err)
1325                goto out_ro;
1326        err = ubifs_add_dirt(c, lnum, xlen);
1327        if (err)
1328                goto out_ro;
1329
1330        /*
1331         * Remove all nodes belonging to the extended attribute inode from TNC.
1332         * Well, there actually must be only one node - the inode itself.
1333         */
1334        lowest_ino_key(c, &key1, inode->i_ino);
1335        highest_ino_key(c, &key2, inode->i_ino);
1336        err = ubifs_tnc_remove_range(c, &key1, &key2);
1337        if (err)
1338                goto out_ro;
1339        err = ubifs_add_dirt(c, lnum, UBIFS_INO_NODE_SZ);
1340        if (err)
1341                goto out_ro;
1342
1343        /* And update TNC with the new host inode position */
1344        ino_key_init(c, &key1, host->i_ino);
1345        err = ubifs_tnc_add(c, &key1, lnum, xent_offs + len - hlen, hlen);
1346        if (err)
1347                goto out_ro;
1348
1349        finish_reservation(c);
1350        spin_lock(&host_ui->ui_lock);
1351        host_ui->synced_i_size = host_ui->ui_size;
1352        spin_unlock(&host_ui->ui_lock);
1353        mark_inode_clean(c, host_ui);
1354        return 0;
1355
1356out_ro:
1357        ubifs_ro_mode(c, err);
1358        finish_reservation(c);
1359        return err;
1360}
1361
1362/**
1363 * ubifs_jnl_change_xattr - change an extended attribute.
1364 * @c: UBIFS file-system description object
1365 * @inode: extended attribute inode
1366 * @host: host inode
1367 *
1368 * This function writes the updated version of an extended attribute inode and
1369 * the host inode tho the journal (to the base head). The host inode is written
1370 * after the extended attribute inode in order to guarantee that the extended
1371 * attribute will be flushed when the inode is synchronized by 'fsync()' and
1372 * consequently, the write-buffer is synchronized. This function returns zero
1373 * in case of success and a negative error code in case of failure.
1374 */
1375int ubifs_jnl_change_xattr(struct ubifs_info *c, const struct inode *inode,
1376                           const struct inode *host)
1377{
1378        int err, len1, len2, aligned_len, aligned_len1, lnum, offs;
1379        struct ubifs_inode *host_ui = ubifs_inode(host);
1380        struct ubifs_ino_node *ino;
1381        union ubifs_key key;
1382        int sync = IS_DIRSYNC(host);
1383
1384        dbg_jnl("ino %lu, ino %lu", host->i_ino, inode->i_ino);
1385        ubifs_assert(host->i_nlink > 0);
1386        ubifs_assert(inode->i_nlink > 0);
1387        ubifs_assert(mutex_is_locked(&host_ui->ui_mutex));
1388
1389        len1 = UBIFS_INO_NODE_SZ + host_ui->data_len;
1390        len2 = UBIFS_INO_NODE_SZ + ubifs_inode(inode)->data_len;
1391        aligned_len1 = ALIGN(len1, 8);
1392        aligned_len = aligned_len1 + ALIGN(len2, 8);
1393
1394        ino = kmalloc(aligned_len, GFP_NOFS);
1395        if (!ino)
1396                return -ENOMEM;
1397
1398        /* Make reservation before allocating sequence numbers */
1399        err = make_reservation(c, BASEHD, aligned_len);
1400        if (err)
1401                goto out_free;
1402
1403        pack_inode(c, ino, host, 0);
1404        pack_inode(c, (void *)ino + aligned_len1, inode, 1);
1405
1406        err = write_head(c, BASEHD, ino, aligned_len, &lnum, &offs, 0);
1407        if (!sync && !err) {
1408                struct ubifs_wbuf *wbuf = &c->jheads[BASEHD].wbuf;
1409
1410                ubifs_wbuf_add_ino_nolock(wbuf, host->i_ino);
1411                ubifs_wbuf_add_ino_nolock(wbuf, inode->i_ino);
1412        }
1413        release_head(c, BASEHD);
1414        if (err)
1415                goto out_ro;
1416
1417        ino_key_init(c, &key, host->i_ino);
1418        err = ubifs_tnc_add(c, &key, lnum, offs, len1);
1419        if (err)
1420                goto out_ro;
1421
1422        ino_key_init(c, &key, inode->i_ino);
1423        err = ubifs_tnc_add(c, &key, lnum, offs + aligned_len1, len2);
1424        if (err)
1425                goto out_ro;
1426
1427        finish_reservation(c);
1428        spin_lock(&host_ui->ui_lock);
1429        host_ui->synced_i_size = host_ui->ui_size;
1430        spin_unlock(&host_ui->ui_lock);
1431        mark_inode_clean(c, host_ui);
1432        kfree(ino);
1433        return 0;
1434
1435out_ro:
1436        ubifs_ro_mode(c, err);
1437        finish_reservation(c);
1438out_free:
1439        kfree(ino);
1440        return err;
1441}
1442
1443#endif /* CONFIG_UBIFS_FS_XATTR */